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Abstract. We study the Bethe ansatz equations for a generalizedXXZ model on a one-
dimensional lattice. Assuming the string conjecture we propose an integer version for vacancy
numbers and prove a combinatorial completeness of Bethe’s states for a generalizedXXZ

model. We find an exact form for the inverse matrix related with vacancy numbers and compute
its determinant. This inverse matrix has a tridiagonal form, generalizing the Cartan matrix of
typeA.

1. Introduction

An integrable generalization of spin-1
2 HeisenbergXXZ model to arbitrary spins was given,

for example, in [KR2]. As a matter of fact, a spectrum of the generalizedXXZ model is
described by the solutions{λi} to the following system of equations(16 j 6 l):

N∏
a=1

sinh 1
2θ(λj + 2isa)

sinh 1
2θ(λj − 2isa)

=
l∏

k=1
k 6=j

sinh 1
2θ(λj − λk + 2i)

sinh 1
2θ(λj − λk − 2i)

. (1.1)

Hereθ is an anisotropy parameter,sa, 16 a 6 N , are the spins of atoms in the magnetic
chain andl is the number of magnons over the ferromagnetic vacuum.

The main goal of our paper is to present a computation the number of solutions to
system (1.1) based on the so-called string conjecture (see, e.g., [TS], [KR1]). In spite of
the well known fact that solutions of (1.1) do not have, in general, a ‘string nature’ (see,
e.g., [EKK]), we prove that the string conjecture gives a correct answer for the number
of solutions to the system of equations (1.1). Note that a combinatorial completeness of
Bethe’s states for the generalizedXXX Heisenberg model was proved in [K1] and appears
to be a starting point for numerous applications to combinatorics of Young tableaux and
representation theory of symmetric and general linear groups (see, e.g., [K2]).

2. Analysis of the Bethe equations

Let us consider theXXZ model of spinss1, . . . , sk interacting on a one-dimensional lattice
with the each spinsi repeatedNi times. In the standardXXZ model all spinssi are equal
to 1

2. Let1 be the anisotropy parameter (see, e.g., [TS], [KR2]). We assume that 0< 1 < 1.

0305-4470/97/041209+18$19.50c© 1997 IOP Publishing Ltd 1209



1210 A N Kirillov and N A Liskova

Let us pick out a real numberθ such that cosθ = 1, 0< θ < π
2 , and denote

p0 = π

θ
> 2.

Each spins has a ‘parity’v2s which is equal to plus or minus one.
Bethe vectorsψ(x1, . . . , xl) for XXZ model are parametrized byl complex numbers

xj (mod 2p0i) (l 6 2s1N1+· · ·+2skNk), which satisfy the following system of transcendental
equations (Bethe’s equations),

k∏
m=1

(−1)Nmv2sm

(
sinh 1

2θ(xα + ηm − i(2sm + 1
2(1− v2sm)p0))

sinh 1
2θ(xα + ηm + i(2sm + 1

2(1− v2sm)p0))

)Nm

= −
l∏

j=1

sinh1
2θ(xα − xj − 2 i)

sinh 1
2θ(xα − xj + 2 i)

(2.1)

where α = 1, . . . , l and {ηm} are some fixed real numbers, and the non-degeneracy
conditions, the norm of the Bethe’s vectorsψ are not equal to zero, apply.

Solutions to the system (2.1) are considered modulo 2p0iZ, because sinh( 1
2θx) is a

periodic function with the period 2p0i. Asymptotically forNm→∞, 16 m 6 k and finite
l the solutions to the system (2.1) create the strings. The strings are characterized by the
common real abscissa, which is called the string centre, the lengthn and parityvn. Centres
of even strings are located on the line Imx = 0 (andvn = +1), those of odd strings are
located on the line Imx = p0 (andvn = −1). A string of lengthn and parityvn consists
of n complex numbersxnβ,j of the following form,

xnβ,j = xnβ + i

(
n+ 1− 2j + 1− vn

2
p0)+O(exp(−δN)

)
(mod 2p0i) (2.2)

whereδ > 0, j = 1, . . . , n, xnβ ∈ R.
A distribution of numbers{xj } on strings is called a configuration. Each configuration

can be parametrized by the filling numbers{λn}, where λn is equal to the number of
strings with lengthn and parityvn. Each real solution of the system (2.1)(modulo 2p0i),
corresponds to an even string of length 1. Configuration parameters{λn}, n > 1, satisfy the
following conditions: λn > 0,

∑
n>1 nλn = l. The system (2.1) can be transformed into

that for real numbersxnβ for each fixed configuration. To get such a system, let us calculate
the scattering phaseθn,m(x) of the string lengthn on that of lengthm. By definition

exp(−2π iθn,m(x)) =
n∏
j=1

m∏
k=1

sinh 1
2θ(x

n
α,j − xmβ,k − 2i)

sinh 1
2θ(x

n
α,j − xmβ,k + 2i)

x:= xnα − xmβ . (2.3)

From the formulae

Im log

(
sinh(λ+ ai)

sinh(µ+ bi)

)
= arctan(tanhµ · cotb)− arctan(tanhλ · cota) (2.4)

wherea, b, λ, µ ∈ R, it follows

−πθn,m(x) =
n∑
j=1

m∑
k=1

arctan(tanh1
2θx cot 1

2θ(n−m− 2j + 2k + 1
2(vm − vn)p0))

= arctan(tanh1
2θx · cot 1

2θ(m+ n+ 1
2(1− vnvm)p0))

+ arctan(tanh1
2θx · cot 1

2θ(|n−m| + 1
2(1− vnvm)p0))

+2
min(n,m)−1∑

s=1

arctan(tanh1
2θx · cot 1

2θ(|n−m| + 2s + 1
2(1− vnvm)p0)).
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Now let us consider the limit ofθn,m(x) whenx →∞. Note that forx →∞, we have
tanh1

2θx → 1, and arctan(cotz) = −π((z/π)), if z/π 6∈ Z, where((z)) is the Dedekind
function:

((z)) =
{

0 if z ∈ Z
{z} − 1

2 if z 6∈ Z
and{z} = z − [z] is the fractional part ofz. Then

θn,m(∞) =
((

n+m
2p0

+ 1− vnvm
4

))
+
(( |n−m|

2p0
+ 1− vnvm

4

))
+2

min(n,m)−1∑
l=1

(( |n−m| + 2l

2p0
+ 1− vnvm

4

))
.

Let us define

8n,m(λ) = − 1

2π i

n∑
j=1

log
sinh 1

2θ(x
n
α,j + η −mi − 1

2(1− vm)p0i)

sinh 1
2θ(x

n
α,j + η +mi + 1

2(1− vm)p0i)

λ:= xnα + η η ∈ R
then

8n,m(λ) = − 1

2π

n∑
j=1

2 · arctan(tanh1
2θx cot 1

2θ(n−m+ 1− 2j + 1
2(vm − vn)p0))

= 1

π

min(n,m)∑
l=1

arctan(tanh1
2θx cot 1

2θ(|n−m| + 2l − 1+ 1
2(1− vnvm)p0))

and, consequently,

8n,m(∞) =
min(n,m)∑
l=1

(( |n−m| + 2l − 1

2p0
+ 1− vnvm

4

))
. (2.5)

Now let us continue the investigation of system (2.1). Multiplying the equations of
the system (2.1) along the stringxnα,j and taking the logarithm result, one can obtain the
following system on real numbersxnα, α = 1, . . . , λn:∑
m

8n,2sm(x
n
α + ηm)Nm = Qn

α +
∑

(β,m)6=(α,n)
θn,m(x

n
α − xmβ ) α = 1, . . . , λn. (2.6)

Integer or half-integer numbersQn
α, 1 6 α 6 λn, are called quantum numbers. They

parametrize—according to the string conjecture [TS], [FT], [K1]—the solutions to the
system (2.1). Admissible values of quantum numbersQn

α are located in the symmetric
interval [−Qn

max,Q
n
max] and appear to be an integer or half-integer in accordance with that

of Qn
max.

3. Calculation of vacancy numbers

Following [TS], we will assume that there are two types of length 1 string, namely even
and odd types. If the lengthn of a string is greater than 1, thenn and parityvn satisfy the
following conditions:

vn · sin(n− 1)θ > 0 (3.1)

vn · sin(jθ) sin(n− j)θ > 0 j = 1, . . . , n− 1. (3.2)
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Condition (3.1) may be rewritten equivalently as

vn = exp

(
π i

[
n− 1

p0

])
and (3.2) as [

j

p0

]
+
[
n− j
p0

]
=
[
n− 1

p0

]
j = 1, . . . , n− 1. (3.3)

The set of integer numbersn satisfying (3.3) for fixedp0 ∈ R may be described by the
following construction (see, e.g., [TS], [KR1], [KR2]).

Let us define a sequence of real numberspi and sequences of integer numbersνi, mi, yi :

p0 = π

θ
, p1 = 1, νi =

[
pi

pi+1

]
, pi+1 = pi−1− νi−1pi i = 1, 2, . . . (3.4)

y−1 = 0, y0 = 1, y1 = ν0, yi+1 = yi−1+ νiyi i = 0, 1, 2, . . . (3.5)

m0 = 0, m1 = ν0, mi+1 = mi + νi i = 0, 1, 2, . . . . (3.6)

It is clear that integer numbersνi define the decomposition ofp0 into a continuous
fraction

p0 = [ν0, ν1, ν2 . . .].

Let us define a piecewise linear functionnt , t > 1

nt = yi−1+ (t −mi)yi if mi 6 t < mi+1.

Then for any integern > 1 there exists the unique rational numbert such thatn = nt .

Lemma 3.1. [KR1]. The integer numbern > 1 satisfies (3.3) if and only if there exists an
integer numbert such thatn = nt .

We have two types of length 1 strings:

x1
α with parity v1 = +1

xm1
α with parity vm1 = −1.

All others strings have a lengthn = nj , for some integerj , and parity

vj = vnj = exp

(
π i

[
nj − 1

p0

])
.

Let us assume that all spinssi have the following form:

2si = nχi − 1 χi ∈ Z+. (3.7)

From the assumptions (3.1), (3.3) and (3.7) about spins, length and parity, a simple
expression for the sumsθn,m(∞) and8n,2s(∞) follows.

In our paper we consider a special case of rationalp0. The case of irrationalp0 may
be obtained as a limit. So, we assume thatp0 = u/v ∈ Q, p0 = [ν0, . . . , να], ν0 > 2,
να > 2. Furthermore, we assume that all strings have a length not greater thanu (see [TS]).
Therefore, for numberspi, νi, yi, mi (see (3.4)–(3.6)), it is enough to keep only the indices
i 6 α + 1. We have also

pα+1 = 1

yα
p0 = yα+1

yα
and GCD(yα, yα+1) = 1.
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Now we will state the results of calculations for the sumsθn,m(∞) and8n,m(∞). Let
us introduce

qj = (−1)i(pi − (j −mi)pi+1) if mi 6 j < mi+1

r(j) = i if mi 6 j < mi+1

bjk = (−1)i−1

p0
(qknj − qjnk) if nj < nk (3.8)

bj,mi+1 = 1 mi < j < mi+1

θj,k = θnj ,nk (∞) 8j,2s = 8nj ,2s(∞).

Theorem 3.2. (Calculation of the sumsθj,k,8j,2s) [KR1].

(1) If k > j , and(j, k) 6= (mα+1− 1, mα+1) then

θjk = −nj qk
p0
.

(2) If j = mα+1− 1, k = mα+1, then

θjk = −nj qk
p0
+ (−1)α+1

2
= (−1)α

p0− 2

2p0
.

(3) If 1 6 j 6 mα+1, then

θjj = −nj qj
p0
+ (−1)r(j)

2
.

(4) (Symmetry). For all 16 j, k 6 mα+1

θjk = θkj .
(5) If 2s = nχ − 1, then

8k,2s =


1

2p0
(qk − qknχ) if nk > 2s

1

2p0
(qk − qχnk)+ (−1)r(k)−1

2
if nk 6 2s.

Note that ifp0 = ν0 is an integer then

28k,2s =


2sk

p0
−min(k, 2s) if 1 6 k, 2s + 1< ν0

0 if 1 6 k 6 ν0, 2s + 1> ν0.

Now we are going to calculate the vacancy numbers. By definition the vacancy numbers
are equal to

Pnj (λ) = 2Q
nj
max− λj + 1

where

Q
nj
max= (−1)i−1

(
Q
nj∞ − θjj − nj

2

{∑
2smNm − 2l

p0

})
− 1

2
mi 6 j < mi+1

and{x} is the fractional part of the real numberx.
Here we put

Q
nj∞ =

∑
k

8nj ,2skNk −
∑
k

θnj nkλk + θnj nj .
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Let us say a few words about our definition of the vacancy numbersPnj . In contrast
with theXXX model situation, it happens that the vectorx = (∞, . . . ,∞) for theXXZ
case does not appear to be a formal solution to the Bethe equations (2.1). Another difficulty
appears in finding a correct boundary for quantum numbersQn

α (see (2.6)). A natural
boundary isQ

nj∞ but this number does not appear to be an integer or half-integer one
in general. Our choice is based on the attempt to have a combinatorial completeness of
Bethe’s states and some analytical considerations. In the following we will use the notation
Pj (λ),Q

j
∞,Q

j
max, . . . instead ofPnj (λ),Q

nj∞,Q
nj
max, . . ..

After tedious calculations one can find

Pj (λ) = aj + 2
∑
k>j

bjkλk j 6= mα+1− 1, mα+1

Pmα+1−1(λ) = amα+1−1+ λmα+1 (3.9)

Pmα+1(λ) = amα+1 + λmα+1−1

where

aj = (−1)i−1

(∑
m

28j,2sm ·Nm +
2lqj
p0
− nj

{∑
2smNm − 2l

p0

})
andbjk for nj < nk are defined in (3.8).

From the string conjecture (see [TS], [KR2]) it follows that the number of Bethe’s
vectors with configuration{λk} is equal to

Z(N, s|{λk}) =
∏
j

(
Pj (λ)+ λj

λj

)
.

The number of Bethe’s vectors with fixedl is equal to

Z(N, s|l) =
∑
{λk}

Z(N, s|{λk}) (3.10)

where summation is taken over all configurations{λk}, such thatλk > 0, and

mα+1∑
k=1

nkλk = l. (3.11)

So, the total number of Bethe’s vectors is equal to

Z = Z(N, s) =
∑
l

Z(N, s|l) (3.12)

where we assume that

Z(N, s|l):= Z(N, s|
∑

2smNm − l) for l >
∑

smNm.

The conjecture about combinatorial completeness of Bethe’s states for theXXZ model
means that

Z =
∏
m

(2sm + 1)Nm. (3.13)
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4. The main combinatorial identity

Let a0 = 0, a1, a2, . . . , amα+1 be a sequence of real numbers. Then we shall define
inductively a sequenceb2, . . . , bm1−1, bm1+1, . . . , bmα+1, bmα+2 by the following rules:

bk = 2ak−1− ak−2− ak if k 6= mi, k > 2

bmi+1 = 2ami−1− ami−2− ami+1 if 1 6 i 6 α
bmα+2 = amα+1−1− amα+1−2+ amα+1.

Then one can check that the converse formulae are

aj = (−1)r(j)
(
nj

p0
qmα+1(am−1− am)− 2

∑
k

8jk · bk
)

where8jk were defined in (2.5).
For a given configuration{λn} = λ let us define the vacancy numbers

Pj (λ) = aj + 2
∑
k>j

bjkλk j 6= mα+1− 1, mα+1

Pmα+1−1(λ) = amα+1−1+ λmα+1

Pmα+1(λ) = amα+1 + λmα+1−1.

Let us put

Z({ak}|l) =
∑
{λk}

mα+1∏
k=1

(
Pk(λ)+ λk

λk

)
where summation is taken over all configurations{λk} such that

m∑
k=1

nkλk = l.

Note that a binomial coefficient

(
α

ν

)
for realα and integer positiveν is defined as

(
α

ν

)
= α(α − 1) . . . (α − ν + 1)

ν!
.

Theorem 4.1. (The main combinatorial identity.) We have

Z({ak}|l) = Resu=0f (u)u
−l−1 du

where

f (u) = (1+ u)2l+2a1−a2
∏
k 6=mi

(
1− unk
1− u

)2ak−1−ak−ak−2

·
α∏
i=1

(
1− uyi
1− u

)2ami−1−ami−2−ami+1
(

1− uyα+1

1− u
)amα+1+amα+1−1−amα+1−2

.
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Proof. We shall divide the proof into a few steps.
Step I. Let us putmα+1 = m. We define a sequence of formal power seriesϕ1, . . . , ϕm

in variablesz1, . . . , zm, z0 by the following rules:

ϕm(zm) = (1− zm)−(am+1)(1− z0(1− zm)−1)−1

ϕm−1(zm−1, zm) = (1− zm−1)
−(am−1+1)ϕm((1− zm−1)

−1zm)

...

ϕk(zk, . . . , zm) = (1− zk)−(ak+1)ϕk+1((1− zk)−2bk,k+1

×zk+1, . . . , (1− zk)−2bk,l zl, . . . , (1− zk)−2bk,mzm)

...

ϕ1(z1, . . . , zm) = (1− z1)
−(a1+1)ϕ2((1− z1)

−2b1,2z2, . . . , (1− z1)
−2b1,l

×zl, . . . , (1− z1)
−2b1,mzm).

Lemma 4.2. In the power seriesϕ1(z1, . . . , zm) a coefficient beforezν0
o z

ν1
1 . . . z

νm
m is equal

to
m−1∏
j=1

(
Pj (ν)+ νj

νj

)
·
(
am + νm + ν0

νm

)
.

Proof.

ϕm(zm) =
∑
ν0,νm

z
ν0
0 z

νm
m

(
am + νm + ν0

νm

)
.

Let us assume that

ϕk(zk, . . . , zm) =
∑

ν0,νk,...,νm

Ak(νk, . . . , νm; ν0)z
ν0
0 z

νk
k . . . z

νm
m

then

ϕk−1(zk−1, . . . , zm)

= (1− zk−1)
−(ak−1+1)ϕk((1− zk)−2bk,k+1zk+1, . . . , (1− zk)−2bk,mzm)

=
∑

ν0,νk,...,νm

Ak(νk, . . . , νm; ν0)(1− zk−1)
−(pk−1(ν)+1)z

ν0
0 z

νk
k . . . z

νm
m

=
∑

ν0,νk−1,...,νm

Ak(νk, . . . , νm; ν0)

(
Pk−1(ν)+ νk−1

νk−1

)
z
ν0
0 z

νk−1

k−1 . . . z
νm
m .

Consequently,

Ak−1(νk−1, νk, . . . , νm; ν0) = Ak(νk, . . . , νm; ν0) · ( Pk−1(ν)+ νk−1νk−1 ) .

�
From lemma 4.2 it follows that the sumZ({a}|l) is equal to the coefficient beforet l in

the power series ofψ(z, t), which has been obtained fromϕ1(z1, . . . , zm) after substitution

zj = tnj j 6= m− 1

zm−1 = tnm−1z−1
0 .

Step II. Calculation of the power series forψ(z, t). Let us define

z
(l)
k := (1− z(l−1)

l )−2bl,k · z(l−1)
k l > 1 (4.1)

z
(0)
k = tnk if k 6= m− 1 andz(0)m−1 = tnm−1z−1

0 .
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Then we have

ϕ1(z1, . . . , zm) = (1− z1)
−(a1+1)ϕ2(z

(1)
2 , z

(1)
3 , . . . , z(1)m )

= (1− z1)
−(a1+1)(1− z(1)2 )−(a2+1)ϕ3(z

(2)
3 , z

(2)
4 , . . . , z(2)m )

... (4.2)

=
m−1∏
j=1

(1− z(j−1)
j )−(aj+1) · ϕm−1(z

(m−2)
m−1 , z(m−2)

m ).

In order to compute a formal seriesz(l)k , we define (see, e.g., [K1]) a sequence of polynomials
Qm(t) using the following recurrence relation:

Qm+1(t) = Qm(t)− tQm−1(t) m > 0

Q0(t) = Q−1(t):= 1.

Lemma 4.3. (Formulae for power seriesz(l)k .) Let us assume thatmi 6 k < mi+1 and put
m0 := 1. Then we have (Qk := Qk(t))

(1) z(k−1)
k = Q−2

k−1Qmi−2z
(0)
k .

(2) 1− z(k−1)
k = QkQ

−2
k−1Qk−2, if k 6= mi .

(3) If k = mi , i > 1, then 1− z(k−1)
k = QkQ

−2
k−1Qmi−1−2.

(4) After specializationt := u/(1+ u)2 one can find (note thatmi 6 k < mi+1)

Qk(u) = 1− 1− unk+2yi

(1− u)(1+ u)nk+2yi−1
.

(5) If k 6= mi + 1 andmi 6 k < mi+1, then

z
(k−2)
k = Q2

k−3Q
−4
k−2Q

2
mi−2z

(0)
k .

Proof. This follows by induction from (4.1) and the properties of polynomialsQk(t)

(compare [K1], lemma 2). �

Corollary 4.4. (1)

z(m−2)
m = Q2

m−3Q
−2
m−2t

nm z
(m−2)
m−1 = Q−2

m−2Q
2
mα−2

tnm−1z−1
0 .

(2) Let us denote byϕm−1(u, z0) a specializationt = u/(1− u)2 of formal series
ϕm−1(z

(m−2)
m−1 , z(m−1)

m ) and letϕm−1(u) be a constant term of seriesϕm−1(u, z0) with respect
to variablez0. Then

ϕm−1(u) = (1− uyα+1)am+am−1+1(1− uyα+1−yα )−(am−1+1)(1− uyα )−(am+1).

Note thatm = mα+1.

Step III. Combining (4.2), lemma 4.3 and corollary 4.4 after some simplifications we
obtain a proof of theorem 4.1. �

Corollary 4.5. (Combinatorial completeness of Bethe’s states forXXZ model of arbitrary
spins.)

Z =
∏
m

(2sm + 1)Nm. (4.3)

Examples below give an illustration to our result about completeness of Bethe’s states
for the spin-12 XXZ model (examples 1 and 3) and for the spin-1XXZ model (example 4).
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Example 1. We compute firstly the quantitiesqj , aj (see (3.8)) and after this consider a
numerical example. From (3.4)–(3.6) and (3.8) it follows that

qj = (−1)i
p0− njpi+1

yi
.

Using theorem 3.2(5) we obtain (see (3.9))

aj = (−1)i−1nj

[∑
2smNm − 2l

p0

]
+ (−1)i(nj + qj )

(∑
2smNm − 2l

p0

)
+ nj
p0

∑
{m:2sm6nj }

Nm

(
pi+1

yi
(2sm + 1)+ (−1)iqχ

)

+
∑

{m:2sm6nj }
Nm

(
1− 1

yi
(2sm + 1)

)
. (4.4)

Let us consider the case when all spins are equal to1
2 and letN be the number of spins,

then
(i) 0 6 j < m1(= ν0). Thenr(j) = i = 0 andnj = j, qj = p0− j ,

aj = −nj
[
N − 2l

p0

]
+N − 2l + δnj ,1

N

p0
(2− p0+ qχ).

(ii) m1 6 j < m2(= ν0 + ν1). Then r(j) = 1 and nj = 1 + (j − m1)ν0,
qj = (p0− ν0)(j −m1)− 1,

aj = nj
[
N − 2l

p0

]
− N − 2l

ν0
(nj − 1)− δnj ,1

N

p0
(2− p0+ qχ).

For example,

am1 =
[
N − 2l

p0

]
− N

p0
(2− p0+ qχ).

(iii) m2 6 j < m3 (= ν0+ ν1+ ν2). Thenr(j) = 2 andnj = ν0+ (j −m2)(1+ ν0ν1),
qj = p0− ν0− (j −m2)(1− ν1(p0− ν0))

aj = −nj
[
N − 2l

p0

]
+ N − 2l

ν0+ (1/ν1)

(
nj + 1

ν1

)
.

Consequently,

am2 = −ν0

[
N − 2l

p0

]
+ (N − 2l).

Now let us assumep0 = 3+ 1
3, N = 5. It is clear that in our caseχ = 2 (see (3.7))

andqχ = p0−2. Below we give all solutionsλ = {λ1, λ2, . . .} to the equation (3.11) when
0 6 l 6 2 and compute the corresponding vacancy numbersPj = Pj (λ) (see (3.9)) and
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number of statesZ = Z(N, 1
2|{λk}) (see (3.10) and (3.12)):

l = 0 {0} Pj = 0 Z = 1
Z(5, 1

2|0) = 1
l = 1 {1, 0, 0} P1 = 3 Z = 4

{0, 0, 1} P3 = 0 Z = 1
Z(5, 1

2|1) = 5
l = 2 {0, 1, 0} P2 = 1 Z = 2

{2, 0, 0} P1 = 1 Z = 3
{0, 0, 2} P3 = 0 Z = 1

{1, 0, 1}
{
P1 = 3

P3 = 0
Z = 4

Z(5, 1
2|2) = 10.

Consequently,

Z(N = 5, 1
2) = 2(1+ 5+ 10) = 32= 25.

Note that our formula (3.10) for the number of Bethe’s states with fixed spinl, namely
Z(N, s|l), works for l >

∑
smNm as well as for smalll 6

∑
smNm.

In the appendix we consider two additional examples, one when all spins are equal to
1
2, another when all spins are equal to 1. The last example seems to be interesting because
a non-admissible configuration appears.

Remark 1. It is easy to see that for fixedl and sufficiently bigN =∑ 2smNm all vacancy
numbersPj (λ) are non-negative. This is not the case for particularN and we must consider
really the configurations with

Pj (λ)+ λj < 0 for somej (4.5)

in order to have a correct answer forZXXZ(N, s|l). See the appendix, example 4,l = 4,
(♣). Let us note that for theXXX model the non-admissible configurations (i.e. those
satisfying (4.5)) give a zero contribution to the sumZXXX(N, s|l) [K2].

Remark 2. One can rewrite the expressions (3.9) for vacancy numbers in the following
form if mi 6 j < mi+1,

Pj (λ) = (−1)i−1

(∑
m

28j,2sm ·Nm − nj
{∑

2smNm − 2l

p0

})
−
∑
k

2(−1)r(k)θ̃jkλk − δj,mα+1−1λmα+1 + δj,mα+1λmα+1−1

whereθ̃jk = (−1)r(j)+r(k)njqk/p0, if j 6 k and θ̃jk = θ̃kj .

Let us introduce the symmetric matrix2 = (θ̃ij )16i,j6mα+1. We can find the inverse
matrix2−1 := (cij ) and compute its determinant.

Theorem 4.6. Matrix elementscij of the inverse matrix2−1 are given by the following
rules:

(i) cij = cji andcij = 0, if |i − j | > 2;
(ii) cj−1,j = (−1)i−1, if mi 6 j < mi+1;
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(iii)

cjj =


2(−1)i if mi 6 j < mi+1− 1, i 6 α
(−1)i if j = mi+1− 1, i 6 α
(−1)α+1 if j = mα+1.

Theorem 4.7. We have

det|2−1| = yα+1.

The proofs of theorems 4.6 and 4.7 follow from [KR2], the appendix, and relations

yipi + yi−1pi+1 = p0 06 i 6 α + 1.

Example 2. For p0 = 4+ 1
5 using theorem 4.6 one can find

2−1 =



2 −1
−1 2 −1

−1 1 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −1 −1
−1 1


.

5. Conclusion

In this paper we have proved a very general combinatorial identity (theorem 4.1). As
a particular case we have proved a combinatorial completeness of Bethe’s states for the
generalizedXXZ model (corollary 4.5). One can construct a naturalq-analogue for the
number of Bethe’s states with fixed spinl (see (3.10)). Namely, let us consider a vector

λ̃ = (̃λ1, . . . , λ̃mα+1)

whereλ̃j = (−1)r(j)λj and a matrixE = (ejk)16j,k6mα+1, where

ejk = (−1)r(k)(δj,k − δj,mα+1−1 · δk,mα+1 + δj,mα+1 · δk,mα+1−1).

Then it is easy to check that

Pj (λ)+ λj = ((E − 22)̃λt + bt )j
whereb = (b1, . . . , bmα+1) and

bj = (−1)r(j)
(
nj

{∑
2smNm − 2l

p0

}
−
∑
m

28j,2sm ·Nm
)
.

We consider the followingq-analogue of (3.10),∑
λ

q
1
2 λ̃Bλ̃

t
∏
j

[
((E − B)̃λt + bt )j

λj

]
q

(5.1)

where summation is taken over all configurationsλ = {λk} such that
mα+1∑
k=1

nkλk = l λk > 0 and B = 22.



Completeness of Bethe’s states for the generalized XXZ model 1221

The thermodynamical limit of (5.1) (i.e.Nm→∞) comes to

∑
λ

q
1
2 λ̃Bλ̃

t∏
j (q)λj

. (5.2)

Summation in (5.2) is the same as in (5.1) and(q)n:= (1−q) · · · (1−qn). HereB = C1⊗2
andC1 = (2) is the Cartan matrix of typeA1.

It is an interesting problem to find a representation theory meaning of (5.2), when
B = Ck ⊗2 andCk is the Cartan matrix of typeAk.

Another interesting question concerns the degeneration of Bethe’s states for theXXZ

model into those for theXXX one. More exactly, we had proved (see (4.3)) that

∏
m

(2sm + 1)Nm =
N∑
l=0

ZXXZ(N, s|l) (5.3)

whereN =∑m 2smNm andZXXZ(N, s|l) is given by (3.10).
On the other hand, it follows from a combinatorial completeness of Bethe’s states for

theXXX model (see [K1]) that

∏
m

(2sm + 1)Nm =
1
2N∑
l>0

(N − 2l + 1)ZXXX(N, s|l) (5.4)

whereZXXX(N, s|l) is the multiplicity of the( 1
2N−l)-spin irreducible representationV 1

2N−l
of sl(2) in the tensor product

V ⊗N1
s1
⊗ · · · ⊗ V ⊗Nmsm

.

It is an interesting question to find a combinatorial proof that

RHS(5.3) = RHS(5.4).

Another interesting task is to compare our results with those obtained in [KM]. We intend
to consider these questions and also to study in more detail the casep0 = ν0 as an integer
and all spins equal to(ν0− 2)/2 in separate publications.
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Appendix

Example 3. Using the same notation as in example 1, we consider the cases = 1
2,

p0 = 3 + 1
3, N = 8 and compute the vacancy numbersPj (λ) and numbers of states

Z = Z(N, 1
2|{λk}):
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l = 0 {0} Pj = 0 Z = 1
Z(8, 1

2|0) = 1
l = 1 {1, 0, 0} P1 = 5 Z = 6

{0, 0, 1} P3 = 1 Z = 2
Z(8, 1

2|1) = 8
l = 2 {2, 0, 0} P1 = 3 Z = 10

{0, 0, 2} P3 = 1 Z = 3
{0, 1, 0} P2 = 2 Z = 3

{1, 0, 1}
{
P1 = 5

P3 = 1
Z = 12

Z(8, 1
2|2) = 28

l = 3 {3, 0, 0} P1 = 2 Z = 10
{0, 0, 3} P3 = 0 Z = 1

{0, 0, 0, 0, 0, 1} P6 = 2 Z = 3

{1, 1, 0}
{
P1 = 4

P2 = 2
Z = 15

{0, 1, 1}
{
P2 = 4

P3 = 0
Z = 5

{2, 0, 1}
{
P1 = 4

P3 = 0
Z = 15

{1, 0, 2}
{
P1 = 6

P3 = 0
Z = 7

Z(8, 1
2|3) = 56

l = 4 {4, 0, 0} P1 = 0 Z = 1
{0, 0, 4} P3 = 0 Z = 1
{0, 2, 0} P2 = 0 Z = 1
{0, 0, 0, 1} P4 = 0 Z = 1

{2, 1, 0}
{
P1 = 2

P2 = 0
Z = 6

{0, 1, 2}
{
P2 = 4

P3 = 0
Z = 5

{3, 0, 1}
{
P1 = 2

P3 = 0
Z = 10

{1, 0, 3}
{
P1 = 6

P3 = 0
Z = 7

{2, 0, 2}
{
P1 = 4

P3 = 0
Z = 15

{1, 0, 0, 0, 0, 1}
{
P1 = 4

P6 = 0
Z = 5

{0, 0, 1, 0, 0, 1}
{
P3 = 2

P6 = 0
Z = 3
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{1, 1, 1, 0, 0, 0}


P1 = 4

P2 = 2

P3 = 0

Z = 15

Z(8, 1
2|4) = 70.

Consequently,

Z(N = 8, 1
2|l) =

(
8
l

)
06 l 6 4

and

Z(N = 8, 1
2) = 2(1+ 8+ 28+ 56)+ 70= 256= 28.

Example 4. Let us consider the case when all spins are equal to 1 and letN be the number
of spins. We compute firstly the quantitiesaj (see (3.8)) and after this consider a numerical
example.

(i) 0 6 j < m1(= ν0). Thenr(j) = i = 0 andnj = j, qj = p0− j ,

aj =


−j
[

2N − 2l

p0

]
+ 2N − 2l if j > 2

−j
[

2N − 2l

p0

]
+ jN
p0
(3+ qχ)− 2l if j 6 2.

(ii) m1 6 j < m2(= ν0 + ν1). Then r(j) = 1 and nj = 1 + (j − m1)ν0,
qj = (p0− ν0)(j −m1)− 1,

aj = nj
[

2N − 2l

p0

]
− 2N − 2l

ν0
(nj − 1)− δnj ,1

N

p0
(3− p0+ qχ).

(iii) m2 6 j < m3(= ν0 + ν1 + ν2). Thenr(j) = 2 andnj = ν0 + (j −m2)(1+ ν0ν1),
qj = p0− ν0− (j −m2)(1− ν1(p0− ν0)),

am2 = −ν0

[
2N − 2l

p0

]
+ 2N − 2l.

Now let us assumep0 = 3 + 1
3, N = 5. It is clear thatχ = 6 and qχ = 1

3.
Below we give all solutionsλ = {λ1, λ2, . . .} to the equation (3.11) when 06 l 6 5
and compute the corresponding vacancy numbersPj = Pj (λ) (see (3.9)) and number of
statesZ = Z(N, 1|{λk}) (see (3.10) and (3.12)):

l = 0 {0} Pj = 0 Z = 1
Z(5, 1|0) = 1

l = 1 {1, 0, 0} P1 = 1 Z = 2
{0, 0, 1} P3 = 2 Z = 3

Z(5, 1|1) = 5
l = 2 {2, 0, 0} P1 = 0 Z = 1

{0, 0, 2} P3 = 1 Z = 3
{0, 1, 0} P2 = 4 Z = 5

{1, 0, 1}
{
P1 = 2

P3 = 1
Z = 6

Z(5, 1|2) = 15
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l = 3 {3, 0, 0} P1 = −2 Z = 0
{0, 0, 3} P3 = 1 Z = 4

{0, 0, 0, 0, 0, 1} P6 = 1 Z = 2

{1, 1, 0}
{
P1 = 0

P2 = 2
Z = 3

{0, 1, 1}
{
P2 = 4

P3 = 1
Z = 10

{2, 0, 1}
{
P1 = 0

P3 = 1
Z = 2

{1, 0, 2}
{
P1 = 2

P3 = 1
Z = 9

Z(5, 1|3) = 30
l = 4 {4, 0, 0} P1 = −3 Z = 0

{0, 0, 4} P3 = 0 Z = 1
{0, 2, 0} P2 = 2 Z = 6
{0, 0, 0, 1} P4 = −2 Z = −1 (♣)
{2, 1, 0}

{
P1 = −1

P2 = 2
Z = 0

{0, 1, 2}
{
P2 = 6

P3 = 0
Z = 7

{3, 0, 1}
{
P1 = −1

P3 = 0
Z = 0

{1, 0, 3}
{
P1 = 3

P3 = 0
Z = 4

{2, 0, 2}
{
P1 = 1

P3 = 0
Z = 3

{1, 0, 0, 0, 0, 1}
{
P1 = 1

P6 = 2
Z = 6

{0, 0, 1, 0, 0, 1}
{
P3 = 2

P6 = 2
Z = 9

{1, 1, 1, 0, 0, 0}


P1 = 1

P2 = 4

P3 = 0

Z = 10

Z(5, 1|4) = 45
l = 5 {5, 0, 0} P1 = −5 Z = 0

{0, 0, 5} P3 = 0 Z = 1

{4, 0, 1}
{
P1 = −3

P3 = 0
Z = 0

{1, 0, 4}
{
P1 = 3

P3 = 0
Z = 4
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{3, 0, 2}
{
P1 = −1

P3 = 0
Z = 0

{2, 0, 3}
{
P1 = 1

P3 = 0
Z = 3

{3, 1, 0}
{
P1 = −3

P2 = 0
Z = 0

{0, 1, 3}
{
P2 = 6

P3 = 0
Z = 7

{1, 2, 0}
{
P1 = −1

P2 = 0
Z = 0

{0, 2, 1}
{
P2 = 2

P3 = 0
Z = 6

{1, 0, 0, 1}
{
P1 = 1

P4 = 0
Z = 2

{0, 0, 1, 1}
{
P3 = 2

P4 = 0
Z = 3

{0, 1, 0, 0, 0, 1}
{
P2 = 2

P6 = 0
Z = 3

{2, 0, 0, 0, 0, 1}
{
P1 = −1

P6 = 0
Z = 0

{0, 0, 2, 0, 0, 1}
{
P3 = 2

P6 = 0
Z = 6

{1, 0, 1, 0, 0, 1}


P1 = 1

P3 = 2

P6 = 0

Z = 6

{2, 1, 1}


P1 = −1

P2 = 2

P3 = 0

Z = 0

{1, 1, 2}


P1 = 1

P2 = 4

P3 = 0

Z = 10

Z(5, 1|5) = 51

Z(N = 5, 1) = 2(1+ 5+ 15+ 30+ 45)+ 51= 243= 35.
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