Completeness of Bethe's states for the generalized $\boldsymbol{X X Z}$ model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 301209
(http://iopscience.iop.org/0305-4470/30/4/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.112
The article was downloaded on 02/06/2010 at 06:12

Please note that terms and conditions apply.

Completeness of Bethe's states for the generalized $X X Z$ model

Anatol N Kirillov \dagger and Nadejda A Liskova \ddagger
\dagger Steklov Mathematical Institute, Fontanka 27, St Petersburg, 191011, Russia
\ddagger St Petersburg Institute of Aviation Instruments, Gertzena 67, St Petersburg, 190000, Russia

Received 21 May 1996, in final form 28 August 1996

Dedicated to the memory of Ansgar Schnizer

Abstract

We study the Bethe ansatz equations for a generalized $X X Z$ model on a onedimensional lattice. Assuming the string conjecture we propose an integer version for vacancy numbers and prove a combinatorial completeness of Bethe's states for a generalized $X X Z$ model. We find an exact form for the inverse matrix related with vacancy numbers and compute its determinant. This inverse matrix has a tridiagonal form, generalizing the Cartan matrix of type A.

1. Introduction

An integrable generalization of spin- $\frac{1}{2}$ Heisenberg $X X Z$ model to arbitrary spins was given, for example, in [KR2]. As a matter of fact, a spectrum of the generalized $X X Z$ model is described by the solutions $\left\{\lambda_{i}\right\}$ to the following system of equations $(1 \leqslant j \leqslant l)$:

$$
\begin{equation*}
\prod_{a=1}^{N} \frac{\sinh \frac{1}{2} \theta\left(\lambda_{j}+2 \mathrm{i} s_{a}\right)}{\sinh \frac{1}{2} \theta\left(\lambda_{j}-2 \mathrm{i} s_{a}\right)}=\prod_{\substack{k=1 \\ k \neq j}}^{l} \frac{\sinh \frac{1}{2} \theta\left(\lambda_{j}-\lambda_{k}+2 \mathrm{i}\right)}{\sinh \frac{1}{2} \theta\left(\lambda_{j}-\lambda_{k}-2 \mathrm{i}\right)} \tag{1.1}
\end{equation*}
$$

Here θ is an anisotropy parameter, $s_{a}, 1 \leqslant a \leqslant N$, are the spins of atoms in the magnetic chain and l is the number of magnons over the ferromagnetic vacuum.

The main goal of our paper is to present a computation the number of solutions to system (1.1) based on the so-called string conjecture (see, e.g., [TS], [KR1]). In spite of the well known fact that solutions of (1.1) do not have, in general, a 'string nature' (see, e.g., $[E K K]$), we prove that the string conjecture gives a correct answer for the number of solutions to the system of equations (1.1). Note that a combinatorial completeness of Bethe's states for the generalized $X X X$ Heisenberg model was proved in [K1] and appears to be a starting point for numerous applications to combinatorics of Young tableaux and representation theory of symmetric and general linear groups (see, e.g., [K2]).

2. Analysis of the Bethe equations

Let us consider the $X X Z$ model of spins s_{1}, \ldots, s_{k} interacting on a one-dimensional lattice with the each spin s_{i} repeated N_{i} times. In the standard $X X Z$ model all spins s_{i} are equal to $\frac{1}{2}$. Let Δ be the anisotropy parameter (see, e.g., [TS], [KR2]). We assume that $0<\Delta<1$.

Let us pick out a real number θ such that $\cos \theta=\Delta, 0<\theta<\frac{\pi}{2}$, and denote

$$
p_{0}=\frac{\pi}{\theta}>2
$$

Each spin s has a 'parity' $v_{2 s}$ which is equal to plus or minus one.
Bethe vectors $\psi\left(x_{1}, \ldots, x_{l}\right)$ for $X X Z$ model are parametrized by l complex numbers $x_{j}\left(\bmod 2 p_{0} \mathrm{i}\right)\left(l \leqslant 2 s_{1} N_{1}+\cdots+2 s_{k} N_{k}\right)$, which satisfy the following system of transcendental equations (Bethe's equations),

$$
\begin{gather*}
\prod_{m=1}^{k}(-1)^{N_{m} v_{2 s_{m}}}\left(\frac{\sinh \frac{1}{2} \theta\left(x_{\alpha}+\eta_{m}-\mathrm{i}\left(2 s_{m}+\frac{1}{2}\left(1-v_{2 s_{m}}\right) p_{0}\right)\right)}{\sinh \frac{1}{2} \theta\left(x_{\alpha}+\eta_{m}+\mathrm{i}\left(2 s_{m}+\frac{1}{2}\left(1-v_{2 s_{m}}\right) p_{0}\right)\right)}\right)^{N_{m}} \\
=-\prod_{j=1}^{l} \frac{\sinh \frac{1}{2} \theta\left(x_{\alpha}-x_{j}-2 \mathrm{i}\right)}{\sinh \frac{1}{2} \theta\left(x_{\alpha}-x_{j}+2 \mathrm{i}\right)} \tag{2.1}
\end{gather*}
$$

where $\alpha=1, \ldots, l$ and $\left\{\eta_{m}\right\}$ are some fixed real numbers, and the non-degeneracy conditions, the norm of the Bethe's vectors ψ are not equal to zero, apply.

Solutions to the system (2.1) are considered modulo $2 p_{0} \mathrm{i} \mathbb{Z}$, because $\sinh \left(\frac{1}{2} \theta x\right)$ is a periodic function with the period $2 p_{0} \mathrm{i}$. Asymptotically for $N_{m} \rightarrow \infty, 1 \leqslant m \leqslant k$ and finite l the solutions to the system (2.1) create the strings. The strings are characterized by the common real abscissa, which is called the string centre, the length n and parity v_{n}. Centres of even strings are located on the line $\operatorname{Im} x=0$ (and $v_{n}=+1$), those of odd strings are located on the line $\operatorname{Im} x=p_{0}$ (and $v_{n}=-1$). A string of length n and parity v_{n} consists of n complex numbers $x_{\beta, j}^{n}$ of the following form,

$$
\begin{equation*}
x_{\beta, j}^{n}=x_{\beta}^{n}+\mathrm{i}\left(n+1-2 j+\frac{1-v_{n}}{2} p_{0}\right)+\mathrm{O}(\exp (-\delta N))\left(\bmod 2 p_{0} \mathrm{i}\right) \tag{2.2}
\end{equation*}
$$

where $\delta>0, j=1, \ldots, n, x_{\beta}^{n} \in \mathbb{R}$.
A distribution of numbers $\left\{x_{j}\right\}$ on strings is called a configuration. Each configuration can be parametrized by the filling numbers $\left\{\lambda_{n}\right\}$, where λ_{n} is equal to the number of strings with length n and parity v_{n}. Each real solution of the system (2.1) (modulo $2 p_{0} \mathrm{i}$), corresponds to an even string of length 1 . Configuration parameters $\left\{\lambda_{n}\right\}, n \geqslant 1$, satisfy the following conditions: $\lambda_{n} \geqslant 0, \sum_{n \geqslant 1} n \lambda_{n}=l$. The system (2.1) can be transformed into that for real numbers x_{β}^{n} for each fixed configuration. To get such a system, let us calculate the scattering phase $\theta_{n, m}(x)$ of the string length n on that of length m. By definition
$\exp \left(-2 \pi \mathrm{i} \theta_{n, m}(x)\right)=\prod_{j=1}^{n} \prod_{k=1}^{m} \frac{\sinh \frac{1}{2} \theta\left(x_{\alpha, j}^{n}-x_{\beta, k}^{m}-2 \mathrm{i}\right)}{\sinh \frac{1}{2} \theta\left(x_{\alpha, j}^{n}-x_{\beta, k}^{m}+2 \mathrm{i}\right)} \quad x:=x_{\alpha}^{n}-x_{\beta}^{m}$.
From the formulae

$$
\begin{equation*}
\operatorname{Im} \log \left(\frac{\sinh (\lambda+a \mathrm{i})}{\sinh (\mu+b \mathrm{i})}\right)=\arctan (\tanh \mu \cdot \cot b)-\arctan (\tanh \lambda \cdot \cot a) \tag{2.4}
\end{equation*}
$$

where $a, b, \lambda, \mu \in \mathbb{R}$, it follows

$$
\begin{aligned}
-\pi \theta_{n, m}(x)= & \sum_{j=1}^{n} \sum_{k=1}^{m} \arctan \left(\tanh \frac{1}{2} \theta x \cot \frac{1}{2} \theta\left(n-m-2 j+2 k+\frac{1}{2}\left(v_{m}-v_{n}\right) p_{0}\right)\right) \\
= & \arctan \left(\tanh \frac{1}{2} \theta x \cdot \cot \frac{1}{2} \theta\left(m+n+\frac{1}{2}\left(1-v_{n} v_{m}\right) p_{0}\right)\right) \\
& +\arctan \left(\tanh \frac{1}{2} \theta x \cdot \cot \frac{1}{2} \theta\left(|n-m|+\frac{1}{2}\left(1-v_{n} v_{m}\right) p_{0}\right)\right) \\
& +2 \sum_{s=1}^{\min (n, m)-1} \arctan \left(\tanh \frac{1}{2} \theta x \cdot \cot \frac{1}{2} \theta\left(|n-m|+2 s+\frac{1}{2}\left(1-v_{n} v_{m}\right) p_{0}\right)\right)
\end{aligned}
$$

Now let us consider the limit of $\theta_{n, m}(x)$ when $x \rightarrow \infty$. Note that for $x \rightarrow \infty$, we have $\tanh \frac{1}{2} \theta x \rightarrow 1$, and $\arctan (\cot z)=-\pi((z / \pi))$, if $z / \pi \notin \mathbb{Z}$, where $((z))$ is the Dedekind function:

$$
((z))= \begin{cases}0 & \text { if } z \in \mathbb{Z} \\ \{z\}-\frac{1}{2} & \text { if } z \notin \mathbb{Z}\end{cases}
$$

and $\{z\}=z-[z]$ is the fractional part of z. Then

$$
\begin{aligned}
\theta_{n, m}(\infty)= & \left(\left(\frac{n+m}{2 p_{0}}+\frac{1-v_{n} v_{m}}{4}\right)\right)+\left(\left(\frac{|n-m|}{2 p_{0}}+\frac{1-v_{n} v_{m}}{4}\right)\right) \\
& +2 \sum_{l=1}^{\min (n, m)-1}\left(\left(\frac{|n-m|+2 l}{2 p_{0}}+\frac{1-v_{n} v_{m}}{4}\right)\right)
\end{aligned}
$$

Let us define

$$
\begin{gathered}
\Phi_{n, m}(\lambda)=-\frac{1}{2 \pi \mathrm{i}} \sum_{j=1}^{n} \log \frac{\sinh \frac{1}{2} \theta\left(x_{\alpha, j}^{n}+\eta-m \mathrm{i}-\frac{1}{2}\left(1-v_{m}\right) p_{0} \mathrm{i}\right)}{\sinh \frac{1}{2} \theta\left(x_{\alpha, j}^{n}+\eta+m \mathrm{i}+\frac{1}{2}\left(1-v_{m}\right) p_{0} \mathrm{i}\right)} \\
\lambda:=x_{\alpha}^{n}+\eta \quad \eta \in \mathbb{R}
\end{gathered}
$$

then

$$
\begin{aligned}
\Phi_{n, m}(\lambda)= & -\frac{1}{2 \pi} \sum_{j=1}^{n} 2 \cdot \arctan \left(\tanh \frac{1}{2} \theta x \cot \frac{1}{2} \theta\left(n-m+1-2 j+\frac{1}{2}\left(v_{m}-v_{n}\right) p_{0}\right)\right) \\
& =\frac{1}{\pi} \sum_{l=1}^{\min (n, m)} \arctan \left(\tanh \frac{1}{2} \theta x \cot \frac{1}{2} \theta\left(|n-m|+2 l-1+\frac{1}{2}\left(1-v_{n} v_{m}\right) p_{0}\right)\right)
\end{aligned}
$$

and, consequently,

$$
\begin{equation*}
\Phi_{n, m}(\infty)=\sum_{l=1}^{\min (n, m)}\left(\left(\frac{|n-m|+2 l-1}{2 p_{0}}+\frac{1-v_{n} v_{m}}{4}\right)\right) \tag{2.5}
\end{equation*}
$$

Now let us continue the investigation of system (2.1). Multiplying the equations of the system (2.1) along the string $x_{\alpha, j}^{n}$ and taking the logarithm result, one can obtain the following system on real numbers $x_{\alpha}^{n}, \alpha=1, \ldots, \lambda_{n}$:
$\sum_{m} \Phi_{n, 2 s_{m}}\left(x_{\alpha}^{n}+\eta_{m}\right) N_{m}=Q_{\alpha}^{n}+\sum_{(\beta, m) \neq(\alpha, n)} \theta_{n, m}\left(x_{\alpha}^{n}-x_{\beta}^{m}\right) \quad \alpha=1, \ldots, \lambda_{n}$.
Integer or half-integer numbers $Q_{\alpha}^{n}, 1 \leqslant \alpha \leqslant \lambda_{n}$, are called quantum numbers. They parametrize-according to the string conjecture [TS], [FT], [K1]-the solutions to the system (2.1). Admissible values of quantum numbers Q_{α}^{n} are located in the symmetric interval $\left[-Q_{\max }^{n}, Q_{\max }^{n}\right]$ and appear to be an integer or half-integer in accordance with that of $Q_{\max }^{n}$.

3. Calculation of vacancy numbers

Following [TS], we will assume that there are two types of length 1 string, namely even and odd types. If the length n of a string is greater than 1 , then n and parity v_{n} satisfy the following conditions:

$$
\begin{align*}
& v_{n} \cdot \sin (n-1) \theta>0 \tag{3.1}\\
& v_{n} \cdot \sin (j \theta) \sin (n-j) \theta>0 \quad j=1, \ldots, n-1 . \tag{3.2}
\end{align*}
$$

Condition (3.1) may be rewritten equivalently as

$$
v_{n}=\exp \left(\pi \mathrm{i}\left[\frac{n-1}{p_{0}}\right]\right)
$$

and (3.2) as

$$
\begin{equation*}
\left[\frac{j}{p_{0}}\right]+\left[\frac{n-j}{p_{0}}\right]=\left[\frac{n-1}{p_{0}}\right] \quad j=1, \ldots, n-1 \tag{3.3}
\end{equation*}
$$

The set of integer numbers n satisfying (3.3) for fixed $p_{0} \in \mathbb{R}$ may be described by the following construction (see, e.g., [TS], [KR1], [KR2]).

Let us define a sequence of real numbers p_{i} and sequences of integer numbers v_{i}, m_{i}, y_{i} :

$$
\begin{align*}
& p_{0}=\frac{\pi}{\theta}, p_{1}=1, v_{i}=\left[\frac{p_{i}}{p_{i+1}}\right], p_{i+1}=p_{i-1}-v_{i-1} p_{i} \quad i=1,2, \ldots \tag{3.4}\\
& y_{-1}=0, y_{0}=1, y_{1}=v_{0}, y_{i+1}=y_{i-1}+v_{i} y_{i} \quad i=0,1,2, \ldots \tag{3.5}\\
& m_{0}=0, m_{1}=v_{0}, m_{i+1}=m_{i}+v_{i} \quad i=0,1,2, \ldots \tag{3.6}
\end{align*}
$$

It is clear that integer numbers v_{i} define the decomposition of p_{0} into a continuous fraction

$$
p_{0}=\left[v_{0}, v_{1}, v_{2} \ldots\right]
$$

Let us define a piecewise linear function $n_{t}, t \geqslant 1$

$$
n_{t}=y_{i-1}+\left(t-m_{i}\right) y_{i} \quad \text { if } m_{i} \leqslant t<m_{i+1}
$$

Then for any integer $n>1$ there exists the unique rational number t such that $n=n_{t}$.
Lemma 3.1. [KR1]. The integer number $n>1$ satisfies (3.3) if and only if there exists an integer number t such that $n=n_{t}$.

We have two types of length 1 strings:

$$
\begin{aligned}
& x_{\alpha}^{1} \text { with parity } v_{1}=+1 \\
& x_{\alpha}^{m_{1}} \text { with parity } v_{m_{1}}=-1
\end{aligned}
$$

All others strings have a length $n=n_{j}$, for some integer j, and parity

$$
v_{j}=v_{n_{j}}=\exp \left(\pi \mathrm{i}\left[\frac{n_{j}-1}{p_{0}}\right]\right)
$$

Let us assume that all spins s_{i} have the following form:

$$
\begin{equation*}
2 s_{i}=n_{\chi_{i}}-1 \quad \chi_{i} \in \mathbb{Z}_{+} \tag{3.7}
\end{equation*}
$$

From the assumptions (3.1), (3.3) and (3.7) about spins, length and parity, a simple expression for the sums $\theta_{n, m}(\infty)$ and $\Phi_{n, 2 s}(\infty)$ follows.

In our paper we consider a special case of rational p_{0}. The case of irrational p_{0} may be obtained as a limit. So, we assume that $p_{0}=u / v \in \mathbb{Q}, p_{0}=\left[\nu_{0}, \ldots, v_{\alpha}\right], v_{0} \geqslant 2$, $v_{\alpha} \geqslant 2$. Furthermore, we assume that all strings have a length not greater than u (see [TS]). Therefore, for numbers $p_{i}, v_{i}, y_{i}, m_{i}$ (see (3.4)-(3.6)), it is enough to keep only the indices $i \leqslant \alpha+1$. We have also

$$
p_{\alpha+1}=\frac{1}{y_{\alpha}} \quad p_{0}=\frac{y_{\alpha+1}}{y_{\alpha}} \quad \text { and } \quad \operatorname{GCD}\left(y_{\alpha}, y_{\alpha+1}\right)=1
$$

Now we will state the results of calculations for the sums $\theta_{n, m}(\infty)$ and $\Phi_{n, m}(\infty)$. Let us introduce

$$
\begin{align*}
& q_{j}=(-1)^{i}\left(p_{i}-\left(j-m_{i}\right) p_{i+1}\right) \quad \text { if } m_{i} \leqslant j<m_{i+1} \\
& r(j)=i \quad \text { if } m_{i} \leqslant j<m_{i+1} \\
& b_{j k}=\frac{(-1)^{i-1}}{p_{0}}\left(q_{k} n_{j}-q_{j} n_{k}\right) \quad \text { if } n_{j}<n_{k} \tag{3.8}\\
& b_{j, m_{i+1}}=1 \quad m_{i}<j<m_{i+1} \\
& \theta_{j, k}=\theta_{n_{j}, n_{k}}(\infty) \quad \Phi_{j, 2 s}=\Phi_{n_{j}, 2 s}(\infty) .
\end{align*}
$$

Theorem 3.2. (Calculation of the sums $\theta_{j, k}, \Phi_{j, 2 s}$) [KR1].
(1) If $k>j$, and $(j, k) \neq\left(m_{\alpha+1}-1, m_{\alpha+1}\right)$ then

$$
\theta_{j k}=-n_{j} \frac{q_{k}}{p_{0}}
$$

(2) If $j=m_{\alpha+1}-1, k=m_{\alpha+1}$, then

$$
\theta_{j k}=-n_{j} \frac{q_{k}}{p_{0}}+\frac{(-1)^{\alpha+1}}{2}=(-1)^{\alpha} \frac{p_{0}-2}{2 p_{0}} .
$$

(3) If $1 \leqslant j \leqslant m_{\alpha+1}$, then

$$
\theta_{j j}=-n_{j} \frac{q_{j}}{p_{0}}+\frac{(-1)^{r(j)}}{2}
$$

(4) (Symmetry). For all $1 \leqslant j, k \leqslant m_{\alpha+1}$

$$
\theta_{j k}=\theta_{k j}
$$

(5) If $2 s=n_{\chi}-1$, then

$$
\Phi_{k, 2 s}= \begin{cases}\frac{1}{2 p_{0}}\left(q_{k}-q_{k} n_{\chi}\right) & \text { if } n_{k}>2 s \\ \frac{1}{2 p_{0}}\left(q_{k}-q_{\chi} n_{k}\right)+\frac{(-1)^{r(k)-1}}{2} & \text { if } n_{k} \leqslant 2 s\end{cases}
$$

Note that if $p_{0}=v_{0}$ is an integer then

$$
2 \Phi_{k, 2 s}= \begin{cases}\frac{2 s k}{p_{0}}-\min (k, 2 s) & \text { if } 1 \leqslant k, 2 s+1<v_{0} \\ 0 & \text { if } 1 \leqslant k \leqslant v_{0}, 2 s+1>v_{0}\end{cases}
$$

Now we are going to calculate the vacancy numbers. By definition the vacancy numbers are equal to

$$
P_{n_{j}}(\lambda)=2 Q_{\max }^{n_{j}}-\lambda_{j}+1
$$

where
$Q_{\max }^{n_{j}}=(-1)^{i-1}\left(Q_{\infty}^{n_{j}}-\theta_{j j}-\frac{n_{j}}{2}\left\{\frac{\sum 2 s_{m} N_{m}-2 l}{p_{0}}\right\}\right)-\frac{1}{2} \quad m_{i} \leqslant j<m_{i+1}$
and $\{x\}$ is the fractional part of the real number x.
Here we put

$$
Q_{\infty}^{n_{j}}=\sum_{k} \Phi_{n_{j}, 2 s_{k}} N_{k}-\sum_{k} \theta_{n_{j} n_{k}} \lambda_{k}+\theta_{n_{j} n_{j}}
$$

Let us say a few words about our definition of the vacancy numbers $P_{n_{j}}$. In contrast with the $X X X$ model situation, it happens that the vector $x=(\infty, \ldots, \infty)$ for the $X X Z$ case does not appear to be a formal solution to the Bethe equations (2.1). Another difficulty appears in finding a correct boundary for quantum numbers Q_{α}^{n} (see (2.6)). A natural boundary is $Q_{\infty}^{n_{j}}$ but this number does not appear to be an integer or half-integer one in general. Our choice is based on the attempt to have a combinatorial completeness of Bethe's states and some analytical considerations. In the following we will use the notation $P_{j}(\lambda), Q_{\infty}^{j}, Q_{\max }^{j}, \ldots$ instead of $P_{n_{j}}(\lambda), Q_{\infty}^{n_{j}}, Q_{\max }^{n_{j}}, \ldots$

After tedious calculations one can find

$$
\begin{align*}
& P_{j}(\lambda)=a_{j}+2 \sum_{k>j} b_{j k} \lambda_{k} \quad j \neq m_{\alpha+1}-1, m_{\alpha+1} \\
& P_{m_{\alpha+1}-1}(\lambda)=a_{m_{\alpha+1}-1}+\lambda_{m_{\alpha+1}} \tag{3.9}\\
& P_{m_{\alpha+1}}(\lambda)=a_{m_{\alpha+1}}+\lambda_{m_{\alpha+1}-1}
\end{align*}
$$

where

$$
a_{j}=(-1)^{i-1}\left(\sum_{m} 2 \Phi_{j, 2 s_{m}} \cdot N_{m}+\frac{2 l q_{j}}{p_{0}}-n_{j}\left\{\frac{\sum 2 s_{m} N_{m}-2 l}{p_{0}}\right\}\right)
$$

and $b_{j k}$ for $n_{j}<n_{k}$ are defined in (3.8).
From the string conjecture (see [TS], [KR2]) it follows that the number of Bethe's vectors with configuration $\left\{\lambda_{k}\right\}$ is equal to

$$
Z\left(N, s \mid\left\{\lambda_{k}\right\}\right)=\prod_{j}\binom{P_{j}(\lambda)+\lambda_{j}}{\lambda_{j}} .
$$

The number of Bethe's vectors with fixed l is equal to

$$
\begin{equation*}
Z(N, s \mid l)=\sum_{\left\{\lambda_{k}\right\}} Z\left(N, s \mid\left\{\lambda_{k}\right\}\right) \tag{3.10}
\end{equation*}
$$

where summation is taken over all configurations $\left\{\lambda_{k}\right\}$, such that $\lambda_{k} \geqslant 0$, and

$$
\begin{equation*}
\sum_{k=1}^{m_{\alpha+1}} n_{k} \lambda_{k}=l . \tag{3.11}
\end{equation*}
$$

So, the total number of Bethe's vectors is equal to

$$
\begin{equation*}
Z=Z(N, s)=\sum_{l} Z(N, s \mid l) \tag{3.12}
\end{equation*}
$$

where we assume that

$$
Z(N, s \mid l):=Z\left(N, s \mid \sum 2 s_{m} N_{m}-l\right) \quad \text { for } l \geqslant \sum s_{m} N_{m}
$$

The conjecture about combinatorial completeness of Bethe's states for the $X X Z$ model means that

$$
\begin{equation*}
Z=\prod_{m}\left(2 s_{m}+1\right)^{N_{m}} \tag{3.13}
\end{equation*}
$$

4. The main combinatorial identity

Let $a_{0}=0, a_{1}, a_{2}, \ldots, a_{m_{\alpha+1}}$ be a sequence of real numbers. Then we shall define inductively a sequence $b_{2}, \ldots, b_{m_{1}-1}, b_{m_{1}+1}, \ldots, b_{m_{\alpha+1}}, b_{m_{\alpha+2}}$ by the following rules:

$$
\begin{aligned}
& b_{k}=2 a_{k-1}-a_{k-2}-a_{k} \quad \text { if } k \neq m_{i}, k \geqslant 2 \\
& b_{m_{i+1}}=2 a_{m_{i}-1}-a_{m_{i}-2}-a_{m_{i}+1} \quad \text { if } 1 \leqslant i \leqslant \alpha \\
& b_{m_{\alpha+2}}=a_{m_{\alpha+1}-1}-a_{m_{\alpha+1}-2}+a_{m_{\alpha+1}} .
\end{aligned}
$$

Then one can check that the converse formulae are

$$
a_{j}=(-1)^{r(j)}\left(\frac{n_{j}}{p_{0}} q_{m_{\alpha+1}}\left(a_{m-1}-a_{m}\right)-2 \sum_{k} \Phi_{j k} \cdot b_{k}\right)
$$

where $\Phi_{j k}$ were defined in (2.5).
For a given configuration $\left\{\lambda_{n}\right\}=\lambda$ let us define the vacancy numbers

$$
\begin{aligned}
& P_{j}(\lambda)=a_{j}+2 \sum_{k>j} b_{j k} \lambda_{k} \quad j \neq m_{\alpha+1}-1, m_{\alpha+1} \\
& P_{m_{\alpha+1}-1}(\lambda)=a_{m_{\alpha+1}-1}+\lambda_{m_{\alpha+1}} \\
& P_{m_{\alpha+1}}(\lambda)=a_{m_{\alpha+1}}+\lambda_{m_{\alpha+1}-1} .
\end{aligned}
$$

Let us put

$$
Z\left(\left\{a_{k}\right\} \mid l\right)=\sum_{\left\{\lambda_{k}\right\}} \prod_{k=1}^{m_{\alpha+1}}\binom{P_{k}(\lambda)+\lambda_{k}}{\lambda_{k}}
$$

where summation is taken over all configurations $\left\{\lambda_{k}\right\}$ such that

$$
\sum_{k=1}^{m} n_{k} \lambda_{k}=l .
$$

Note that a binomial coefficient $\binom{\alpha}{v}$ for real α and integer positive v is defined as

$$
\binom{\alpha}{v}=\frac{\alpha(\alpha-1) \ldots(\alpha-v+1)}{\nu!} .
$$

Theorem 4.1. (The main combinatorial identity.) We have

$$
Z\left(\left\{a_{k}\right\} \mid l\right)=\operatorname{Res}_{u=0} f(u) u^{-l-1} \mathrm{~d} u
$$

where

$$
\begin{aligned}
& f(u)=(1+u)^{2 l+2 a_{1}-a_{2}} \prod_{k \neq m_{i}}\left(\frac{1-u^{n_{k}}}{1-u}\right)^{2 a_{k-1}-a_{k}-a_{k-2}} \\
& \cdot \prod_{i=1}^{\alpha}\left(\frac{1-u^{y_{i}}}{1-u}\right)^{2 a_{m_{i}-1}-a_{m_{i}-2}-a_{m_{i+1}}}\left(\frac{1-u^{y_{\alpha+1}}}{1-u}\right)^{a_{m_{\alpha+1}}+a_{m_{\alpha+1}-1}-a_{m_{\alpha+1}-2}} .
\end{aligned}
$$

Proof. We shall divide the proof into a few steps.
Step I. Let us put $m_{\alpha+1}=m$. We define a sequence of formal power series $\varphi_{1}, \ldots, \varphi_{m}$ in variables $z_{1}, \ldots, z_{m}, z_{0}$ by the following rules:

$$
\begin{aligned}
& \varphi_{m}\left(z_{m}\right)=\left(1-z_{m}\right)^{-\left(a_{m}+1\right)}\left(1-z_{0}\left(1-z_{m}\right)^{-1}\right)^{-1} \\
& \varphi_{m-1}\left(z_{m-1}, z_{m}\right)=\left(1-z_{m-1}\right)^{-\left(a_{m-1}+1\right)} \varphi_{m}\left(\left(1-z_{m-1}\right)^{-1} z_{m}\right) \\
& \vdots \\
\varphi_{k}\left(z_{k}, \ldots, z_{m}\right) & =\left(1-z_{k}\right)^{-\left(a_{k}+1\right)} \varphi_{k+1}\left(\left(1-z_{k}\right)^{-2 b_{k, k+1}}\right. \\
& \left.\times z_{k+1}, \ldots,\left(1-z_{k}\right)^{-2 b_{k, l}} z_{l}, \ldots,\left(1-z_{k}\right)^{-2 b_{k, m}} z_{m}\right) \\
& \vdots \\
\varphi_{1}\left(z_{1}, \ldots, z_{m}\right) & =\left(1-z_{1}\right)^{-\left(a_{1}+1\right)} \varphi_{2}\left(\left(1-z_{1}\right)^{-2 b_{1,2}} z_{2}, \ldots,\left(1-z_{1}\right)^{-2 b_{1, l}}\right. \\
& \left.\times z_{l}, \ldots,\left(1-z_{1}\right)^{-2 b_{1, m}} z_{m}\right)
\end{aligned}
$$

Lemma 4.2. In the power series $\varphi_{1}\left(z_{1}, \ldots, z_{m}\right)$ a coefficient before $z_{o}^{\nu_{0}} z_{1}^{\nu_{1}} \ldots z_{m}^{\nu_{m}}$ is equal to

$$
\prod_{j=1}^{m-1}\binom{P_{j}(v)+v_{j}}{v_{j}} \cdot\binom{a_{m}+v_{m}+v_{0}}{v_{m}}
$$

Proof.

$$
\varphi_{m}\left(z_{m}\right)=\sum_{v_{0}, v_{m}} z_{0}^{v_{0}} z_{m}^{v_{m}}\binom{a_{m}+v_{m}+v_{0}}{v_{m}}
$$

Let us assume that

$$
\varphi_{k}\left(z_{k}, \ldots, z_{m}\right)=\sum_{v_{0}, v_{k}, \ldots, v_{m}} A_{k}\left(v_{k}, \ldots, v_{m} ; v_{0}\right) z_{0}^{\nu_{0}} z_{k}^{v_{k}} \ldots z_{m}^{v_{m}}
$$

then
$\varphi_{k-1}\left(z_{k-1}, \ldots, z_{m}\right)$

$$
\begin{aligned}
& =\left(1-z_{k-1}\right)^{-\left(a_{k-1}+1\right)} \varphi_{k}\left(\left(1-z_{k}\right)^{-2 b_{k, k+1}} z_{k+1}, \ldots,\left(1-z_{k}\right)^{-2 b_{k, m}} z_{m}\right) \\
& =\sum_{\nu_{0}, v_{k}, \ldots, v_{m}} A_{k}\left(v_{k}, \ldots, v_{m} ; v_{0}\right)\left(1-z_{k-1}\right)^{-\left(p_{k-1}(v)+1\right)} z_{0}^{\nu_{0}} z_{k}^{v_{k}} \ldots z_{m}^{v_{m}} \\
& =\sum_{v_{0}, v_{k-1}, \ldots, v_{m}} A_{k}\left(v_{k}, \ldots, v_{m} ; v_{0}\right)\binom{P_{k-1}(v)+v_{k-1}}{v_{k-1}} z_{0}^{\nu_{0}} z_{k-1}^{v_{k-1}} \ldots z_{m}^{v_{m}} .
\end{aligned}
$$

Consequently,

$$
A_{k-1}\left(v_{k-1}, v_{k}, \ldots, v_{m} ; v_{0}\right)=A_{k}\left(v_{k}, \ldots, v_{m} ; v_{0}\right) \cdot\left(P_{k-1}(v)+v_{k-1} v_{k-1}\right)
$$

From lemma 4.2 it follows that the sum $Z(\{a\} \mid l)$ is equal to the coefficient before t^{l} in the power series of $\psi(z, t)$, which has been obtained from $\varphi_{1}\left(z_{1}, \ldots, z_{m}\right)$ after substitution

$$
\begin{aligned}
& z_{j}=t^{n_{j}} \quad j \neq m-1 \\
& z_{m-1}=t^{n_{m-1}} z_{0}^{-1}
\end{aligned}
$$

Step II. Calculation of the power series for $\psi(z, t)$. Let us define

$$
\begin{align*}
& z_{k}^{(l)}:=\left(1-z_{l}^{(l-1)}\right)^{-2 b_{l, k}} \cdot z_{k}^{(l-1)} \quad l \geqslant 1 \tag{4.1}\\
& z_{k}^{(0)}=t^{n_{k}} \quad \text { if } k \neq m-1 \text { and } z_{m-1}^{(0)}=t^{n_{m-1}} z_{0}^{-1}
\end{align*}
$$

Then we have

$$
\begin{align*}
\varphi_{1}\left(z_{1}, \ldots, z_{m}\right) & =\left(1-z_{1}\right)^{-\left(a_{1}+1\right)} \varphi_{2}\left(z_{2}^{(1)}, z_{3}^{(1)}, \ldots, z_{m}^{(1)}\right) \\
= & \left(1-z_{1}\right)^{-\left(a_{1}+1\right)}\left(1-z_{2}^{(1)}\right)^{-\left(a_{2}+1\right)} \varphi_{3}\left(z_{3}^{(2)}, z_{4}^{(2)}, \ldots, z_{m}^{(2)}\right) \\
& \vdots \tag{4.2}\\
= & \prod_{j=1}^{m-1}\left(1-z_{j}^{(j-1)}\right)^{-\left(a_{j}+1\right)} \cdot \varphi_{m-1}\left(z_{m-1}^{(m-2)}, z_{m}^{(m-2)}\right)
\end{align*}
$$

In order to compute a formal series $z_{k}^{(l)}$, we define (see, e.g., [K1]) a sequence of polynomials $Q_{m}(t)$ using the following recurrence relation:

$$
\begin{array}{ll}
Q_{m+1}(t)=Q_{m}(t)-t Q_{m-1}(t) & m \geqslant 0 \\
Q_{0}(t)=Q_{-1}(t):=1
\end{array}
$$

Lemma 4.3. (Formulae for power series $z_{k}^{(l)}$.) Let us assume that $m_{i} \leqslant k<m_{i+1}$ and put $m_{0}:=1$. Then we have $\left(Q_{k}:=Q_{k}(t)\right)$
(1) $z_{k}^{(k-1)}=Q_{k-1}^{-2} Q_{m_{i}-2} z_{k}^{(0)}$.
(2) $1-z_{k}^{(k-1)}=Q_{k} Q_{k-1}^{-2} Q_{k-2}$, if $k \neq m_{i}$.
(3) If $k=m_{i}, i \geqslant 1$, then $1-z_{k}^{(k-1)}=Q_{k} Q_{k-1}^{-2} Q_{m_{i-1}-2}$.
(4) After specialization $t:=u /(1+u)^{2}$ one can find (note that $m_{i} \leqslant k<m_{i+1}$)

$$
Q_{k}(u)=1-\frac{1-u^{n_{k}+2 y_{i}}}{(1-u)(1+u)^{n_{k}+2 y_{i}-1}} .
$$

(5) If $k \neq m_{i}+1$ and $m_{i} \leqslant k<m_{i+1}$, then

$$
z_{k}^{(k-2)}=Q_{k-3}^{2} Q_{k-2}^{-4} Q_{m_{i}-2}^{2} z_{k}^{(0)}
$$

Proof. This follows by induction from (4.1) and the properties of polynomials $Q_{k}(t)$ (compare [K1], lemma 2).

Corollary 4.4. (1)

$$
z_{m}^{(m-2)}=Q_{m-3}^{2} Q_{m-2}^{-2} t^{n_{m}} \quad z_{m-1}^{(m-2)}=Q_{m-2}^{-2} Q_{m_{\alpha-2}}^{2} t^{n_{m-1}} z_{0}^{-1}
$$

(2) Let us denote by $\varphi_{m-1}\left(u, z_{0}\right)$ a specialization $t=u /(1-u)^{2}$ of formal series $\varphi_{m-1}\left(z_{m-1}^{(m-2)}, z_{m}^{(m-1)}\right)$ and let $\varphi_{m-1}(u)$ be a constant term of series $\varphi_{m-1}\left(u, z_{0}\right)$ with respect to variable z_{0}. Then

$$
\varphi_{m-1}(u)=\left(1-u^{y_{\alpha+1}}\right)^{a_{m}+a_{m-1}+1}\left(1-u^{y_{\alpha+1}-y_{\alpha}}\right)^{-\left(a_{m-1}+1\right)}\left(1-u^{y_{\alpha}}\right)^{-\left(a_{m}+1\right)}
$$

Note that $m=m_{\alpha+1}$.
Step III. Combining (4.2), lemma 4.3 and corollary 4.4 after some simplifications we obtain a proof of theorem 4.1.

Corollary 4.5. (Combinatorial completeness of Bethe's states for $X X Z$ model of arbitrary spins.)

$$
\begin{equation*}
Z=\prod_{m}\left(2 s_{m}+1\right)^{N_{m}} . \tag{4.3}
\end{equation*}
$$

Examples below give an illustration to our result about completeness of Bethe's states for the spin- $\frac{1}{2} X X Z$ model (examples 1 and 3) and for the spin- $1 X X Z$ model (example 4).

Example 1. We compute firstly the quantities q_{j}, a_{j} (see (3.8)) and after this consider a numerical example. From (3.4)-(3.6) and (3.8) it follows that

$$
q_{j}=(-1)^{i} \frac{p_{0}-n_{j} p_{i+1}}{y_{i}} .
$$

Using theorem 3.2(5) we obtain (see (3.9))

$$
\begin{align*}
a_{j}=(-1)^{i-1} n_{j} & {\left[\frac{\sum 2 s_{m} N_{m}-2 l}{p_{0}}\right]+(-1)^{i}\left(n_{j}+q_{j}\right)\left(\frac{\sum 2 s_{m} N_{m}-2 l}{p_{0}}\right) } \\
& +\frac{n_{j}}{p_{0}} \sum_{\left\{m: 2 s_{m} \leqslant n_{j}\right\}} N_{m}\left(\frac{p_{i+1}}{y_{i}}\left(2 s_{m}+1\right)+(-1)^{i} q_{\chi}\right) \\
& +\sum_{\left\{m: 2 s_{m} \leqslant n_{j}\right\}} N_{m}\left(1-\frac{1}{y_{i}}\left(2 s_{m}+1\right)\right) . \tag{4.4}
\end{align*}
$$

Let us consider the case when all spins are equal to $\frac{1}{2}$ and let N be the number of spins, then
(i) $0 \leqslant j<m_{1}\left(=v_{0}\right)$. Then $r(j)=i=0$ and $n_{j}=j, q_{j}=p_{0}-j$,

$$
a_{j}=-n_{j}\left[\frac{N-2 l}{p_{0}}\right]+N-2 l+\delta_{n_{j}, 1} \frac{N}{p_{0}}\left(2-p_{0}+q_{\chi}\right) .
$$

(ii) $m_{1} \leqslant j<m_{2}\left(=\nu_{0}+v_{1}\right)$. Then $r(j)=1$ and $n_{j}=1+\left(j-m_{1}\right) \nu_{0}$, $q_{j}=\left(p_{0}-v_{0}\right)\left(j-m_{1}\right)-1$,

$$
a_{j}=n_{j}\left[\frac{N-2 l}{p_{0}}\right]-\frac{N-2 l}{v_{0}}\left(n_{j}-1\right)-\delta_{n_{j}, 1} \frac{N}{p_{0}}\left(2-p_{0}+q_{\chi}\right) .
$$

For example,

$$
a_{m_{1}}=\left[\frac{N-2 l}{p_{0}}\right]-\frac{N}{p_{0}}\left(2-p_{0}+q_{\chi}\right) .
$$

(iii) $m_{2} \leqslant j<m_{3}\left(=v_{0}+v_{1}+v_{2}\right)$. Then $r(j)=2$ and $n_{j}=v_{0}+\left(j-m_{2}\right)\left(1+v_{0} \nu_{1}\right)$, $q_{j}=p_{0}-v_{0}-\left(j-m_{2}\right)\left(1-v_{1}\left(p_{0}-v_{0}\right)\right)$

$$
a_{j}=-n_{j}\left[\frac{N-2 l}{p_{0}}\right]+\frac{N-2 l}{v_{0}+\left(1 / v_{1}\right)}\left(n_{j}+\frac{1}{v_{1}}\right) .
$$

Consequently,

$$
a_{m_{2}}=-v_{0}\left[\frac{N-2 l}{p_{0}}\right]+(N-2 l) .
$$

Now let us assume $p_{0}=3+\frac{1}{3}, N=5$. It is clear that in our case $\chi=2$ (see (3.7)) and $q_{\chi}=p_{0}-2$. Below we give all solutions $\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ to the equation (3.11) when $0 \leqslant l \leqslant 2$ and compute the corresponding vacancy numbers $P_{j}=P_{j}(\lambda)$ (see (3.9)) and
number of states $Z=Z\left(N, \left.\frac{1}{2} \right\rvert\,\left\{\lambda_{k}\right\}\right)$ (see (3.10) and (3.12)):

$$
\begin{array}{ccccc}
l=0 & \{0\} & P_{j}=0 & Z=1 & \\
l=1 & \{1,0,0\} & P_{1}=3 & Z=4 & Z\left(5, \left.\frac{1}{2} \right\rvert\, 0\right)=1 \\
& \{0,0,1\} & P_{3}=0 & Z=1 & \\
l=2 & \{0,1,0\} & P_{2}=1 & Z=2 & Z\left(5, \left.\frac{1}{2} \right\rvert\, 1\right)=5 \\
& \{2,0,0\} & P_{1}=1 & Z=3 & \\
& \{0,0,2\} & P_{3}=0 & Z=1 & \\
& \{1,0,1\} & \left\{\begin{array}{l}
P_{1}=3 \\
P_{3}=0
\end{array}\right. & Z=4 &
\end{array}
$$

$$
Z\left(5, \left.\frac{1}{2} \right\rvert\, 2\right)=10
$$

Consequently,

$$
Z\left(N=5, \frac{1}{2}\right)=2(1+5+10)=32=2^{5} .
$$

Note that our formula (3.10) for the number of Bethe's states with fixed spin l, namely $Z(N, s \mid l)$, works for $l \geqslant \sum s_{m} N_{m}$ as well as for small $l \leqslant \sum s_{m} N_{m}$.

In the appendix we consider two additional examples, one when all spins are equal to $\frac{1}{2}$, another when all spins are equal to 1 . The last example seems to be interesting because a non-admissible configuration appears.

Remark 1. It is easy to see that for fixed l and sufficiently big $N=\sum 2 s_{m} N_{m}$ all vacancy numbers $P_{j}(\lambda)$ are non-negative. This is not the case for particular N and we must consider really the configurations with

$$
\begin{equation*}
P_{j}(\lambda)+\lambda_{j}<0 \quad \text { for some } j \tag{4.5}
\end{equation*}
$$

in order to have a correct answer for $Z^{X X Z}(N, s \mid l)$. See the appendix, example $4, l=4$, (\&). Let us note that for the $X X X$ model the non-admissible configurations (i.e. those satisfying (4.5)) give a zero contribution to the sum $Z^{X X X}(N, s \mid l)$ [K2].

Remark 2. One can rewrite the expressions (3.9) for vacancy numbers in the following form if $m_{i} \leqslant j<m_{i+1}$,

$$
\begin{aligned}
P_{j}(\lambda)=(-1)^{i-1} & \left(\sum_{m} 2 \Phi_{j, 2 s_{m}} \cdot N_{m}-n_{j}\left\{\frac{\sum 2 s_{m} N_{m}-2 l}{p_{0}}\right\}\right) \\
& -\sum_{k} 2(-1)^{r(k)} \widetilde{\theta}_{j k} \lambda_{k}-\delta_{j, m_{\alpha+1}-1} \lambda_{m_{\alpha+1}}+\delta_{j, m_{\alpha+1}} \lambda_{m_{\alpha+1}-1}
\end{aligned}
$$

where $\widetilde{\theta}_{j k}=(-1)^{r(j)+r(k)} n_{j} q_{k} / p_{0}$, if $j \leqslant k$ and $\widetilde{\theta}_{j k}=\widetilde{\theta}_{k j}$.
Let us introduce the symmetric matrix $\Theta=\left(\tilde{\theta}_{i j}\right)_{1 \leqslant i, j \leqslant m_{\alpha+1}}$. We can find the inverse matrix $\Theta^{-1}:=\left(c_{i j}\right)$ and compute its determinant.

Theorem 4.6. Matrix elements $c_{i j}$ of the inverse matrix Θ^{-1} are given by the following rules:
(i) $c_{i j}=c_{j i}$ and $c_{i j}=0$, if $|i-j| \geqslant 2$;
(ii) $c_{j-1, j}=(-1)^{i-1}$, if $m_{i} \leqslant j<m_{i+1}$;
(iii)

$$
c_{j j}= \begin{cases}2(-1)^{i} & \text { if } m_{i} \leqslant j<m_{i+1}-1, i \leqslant \alpha \\ (-1)^{i} & \text { if } j=m_{i+1}-1, i \leqslant \alpha \\ (-1)^{\alpha+1} & \text { if } j=m_{\alpha+1}\end{cases}
$$

Theorem 4.7. We have

$$
\operatorname{det}\left|\Theta^{-1}\right|=y_{\alpha+1}
$$

The proofs of theorems 4.6 and 4.7 follow from [KR2], the appendix, and relations

$$
y_{i} p_{i}+y_{i-1} p_{i+1}=p_{0} \quad 0 \leqslant i \leqslant \alpha+1
$$

Example 2. For $p_{0}=4+\frac{1}{5}$ using theorem 4.6 one can find

$$
\Theta^{-1}=\left(\begin{array}{ccccccccc}
2 & -1 & & & & & & & \\
-1 & 2 & -1 & & & & & & \\
& -1 & 1 & 1 & & & & & \\
& & 1 & -2 & 1 & & & & \\
& & & 1 & -2 & 1 & & & \\
& & & & 1 & -2 & 1 & & \\
& & & & & 1 & -2 & 1 & \\
& & & & & & 1 & -1 & -1 \\
& & & & & & & -1 & 1
\end{array}\right) .
$$

5. Conclusion

In this paper we have proved a very general combinatorial identity (theorem 4.1). As a particular case we have proved a combinatorial completeness of Bethe's states for the generalized $X X Z$ model (corollary 4.5). One can construct a natural q-analogue for the number of Bethe's states with fixed spin l (see (3.10)). Namely, let us consider a vector

$$
\tilde{\lambda}=\left(\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m_{\alpha+1}}\right)
$$

where $\tilde{\lambda}_{j}=(-1)^{r(j)} \lambda_{j}$ and a matrix $E=\left(e_{j k}\right)_{1 \leqslant j, k \leqslant m_{\alpha+1}}$, where

$$
e_{j k}=(-1)^{r(k)}\left(\delta_{j, k}-\delta_{j, m_{\alpha+1}-1} \cdot \delta_{k, m_{\alpha+1}}+\delta_{j, m_{\alpha+1}} \cdot \delta_{k, m_{\alpha+1}-1}\right)
$$

Then it is easy to check that

$$
P_{j}(\lambda)+\lambda_{j}=\left((E-2 \Theta) \tilde{\lambda}^{t}+b^{t}\right)_{j}
$$

where $b=\left(b_{1}, \ldots, b_{m_{\alpha+1}}\right)$ and

$$
b_{j}=(-1)^{r(j)}\left(n_{j}\left\{\frac{\sum 2 s_{m} N_{m}-2 l}{p_{0}}\right\}-\sum_{m} 2 \Phi_{j, 2 s_{m}} \cdot N_{m}\right)
$$

We consider the following q-analogue of (3.10),

$$
\sum_{\lambda} q^{\frac{1}{2} \tilde{\lambda} B \tilde{\lambda}^{t}} \prod_{j}\left[\begin{array}{c}
\left((E-B) \tilde{\lambda}^{t}+b^{t}\right)_{j} \tag{5.1}\\
\lambda_{j}
\end{array}\right]_{q}
$$

where summation is taken over all configurations $\lambda=\left\{\lambda_{k}\right\}$ such that

$$
\sum_{k=1}^{m_{\alpha+1}} n_{k} \lambda_{k}=l \quad \lambda_{k} \geqslant 0 \quad \text { and } \quad B=2 \Theta
$$

The thermodynamical limit of (5.1) (i.e. $N_{m} \rightarrow \infty$) comes to

$$
\begin{equation*}
\sum_{\lambda} \frac{q^{\frac{1}{2} \tilde{\lambda} \tilde{\lambda} \tilde{\lambda}^{t}}}{\prod_{j}(q)_{\lambda_{j}}} \tag{5.2}
\end{equation*}
$$

Summation in (5.2) is the same as in (5.1) and $(q)_{n}:=(1-q) \cdots\left(1-q^{n}\right)$. Here $B=C_{1} \otimes \Theta$ and $C_{1}=(2)$ is the Cartan matrix of type A_{1}.

It is an interesting problem to find a representation theory meaning of (5.2), when $B=C_{k} \otimes \Theta$ and C_{k} is the Cartan matrix of type A_{k}.

Another interesting question concerns the degeneration of Bethe's states for the $X X Z$ model into those for the $X X X$ one. More exactly, we had proved (see (4.3)) that

$$
\begin{equation*}
\prod_{m}\left(2 s_{m}+1\right)^{N_{m}}=\sum_{l=0}^{N} Z^{X X Z}(N, s \mid l) \tag{5.3}
\end{equation*}
$$

where $N=\sum_{m} 2 s_{m} N_{m}$ and $Z^{X X Z}(N, s \mid l)$ is given by (3.10).
On the other hand, it follows from a combinatorial completeness of Bethe's states for the $X X X$ model (see $[\mathrm{K} 1]$) that

$$
\begin{equation*}
\prod_{m}\left(2 s_{m}+1\right)^{N_{m}}=\sum_{l \geqslant 0}^{\frac{1}{2} N}(N-2 l+1) Z^{X X X}(N, s \mid l) \tag{5.4}
\end{equation*}
$$

where $Z^{X X X}(N, s \mid l)$ is the multiplicity of the $\left(\frac{1}{2} N-l\right)$-spin irreducible representation $V_{\frac{1}{2} N-l}$ of $\operatorname{sl}(2)$ in the tensor product

$$
V_{s_{1}}^{\otimes N_{1}} \otimes \cdots \otimes V_{s_{m}}^{\otimes N_{m}}
$$

It is an interesting question to find a combinatorial proof that

$$
\operatorname{RHS}(5.3)=\operatorname{RHS}(5.4)
$$

Another interesting task is to compare our results with those obtained in [KM]. We intend to consider these questions and also to study in more detail the case $p_{0}=v_{0}$ as an integer and all spins equal to $\left(v_{0}-2\right) / 2$ in separate publications.

Acknowledgments

We are pleased to thank for hospitality our colleagues from Tokyo University, where this work was completed.

Appendix

Example 3. Using the same notation as in example 1, we consider the case $s=\frac{1}{2}$, $p_{0}=3+\frac{1}{3}, N=8$ and compute the vacancy numbers $P_{j}(\lambda)$ and numbers of states $Z=Z\left(N, \left.\frac{1}{2} \right\rvert\,\left\{\lambda_{k}\right\}\right):$

$$
\begin{align*}
& l=0 \\
& P_{j}=0 \\
& Z=1 \\
& \{1,0,0\} \\
& \begin{array}{l}
\{1,0,0\} \\
\{0,0,1\}
\end{array} \\
& \begin{array}{ll}
P_{1}=5 & Z=6
\end{array} \\
& l=1 \\
& P_{3}=1 \quad Z=2 \\
& l=2 \\
& \{2,0,0\} \\
& \begin{array}{ll}
P_{1}=3 & Z=10 \\
P_{3}=1 & Z=3
\end{array} \\
& \{0,1,0\} \quad P_{2}=2 \quad Z=3 \\
& \{1,0,1\} \\
& \left\{\begin{array}{l}
P_{1}=5 \\
P_{3}=1
\end{array} \quad Z=12\right. \\
& l=3 \\
& \begin{array}{ccc}
\{3,0,0\} & P_{1}=2 & Z=10 \\
\{0,0,3\} & P_{3}=0 & Z=1 \\
\{0,0,0,0,0,1\} & P_{6}=2 & Z=3 \\
\{1,1,0\} & \begin{cases}P_{1}=4 \\
P_{2}=2\end{cases} & Z=15 \\
\{0,1,1\} & \left\{\begin{array}{l}
P_{2}=4 \\
P_{3}=0
\end{array}\right. & Z=5 \\
\{2,0,1\} & \left\{\begin{array}{l}
P_{1}=4 \\
P_{3}=0
\end{array}\right. & Z=15 \\
\{1,0,2\} & \begin{cases}P_{1}=6 \\
P_{3}=0 & Z=7\end{cases}
\end{array} \\
& Z\left(8, \left.\frac{1}{2} \right\rvert\, 2\right)=28 \\
& Z\left(8, \left.\frac{1}{2} \right\rvert\, 3\right)=56 \\
& Z\left(8, \left.\frac{1}{2} \right\rvert\, 0\right)=1 \\
& Z\left(8, \left.\frac{1}{2} \right\rvert\, 1\right)=8 \\
& Z\left(8, \left.\frac{1}{2} \right\rvert\, 2\right)=28 \\
& l=4 \\
& \begin{array}{ccc}
\{4,0,0\} & P_{1}=0 & Z=1 \\
\{0,0,4\} & P_{3}=0 & Z=1 \\
\{0,2,0\} & P_{2}=0 & Z=1 \\
\{0,0,0,1\} & P_{4}=0 & Z=1 \\
\{2,1,0\} & \begin{cases}P_{1}=2 \\
P_{2}=0\end{cases} & Z=6 \\
\{0,1,2\} & \left\{\begin{array}{l}
P_{2}=4 \\
P_{3}=0
\end{array}\right. & Z=5 \\
\{3,0,1\} & \left\{\begin{array}{l}
P_{1}=2 \\
P_{3}=0
\end{array}\right. & Z=10 \\
\{1,0,3\} & \left\{\begin{array}{l}
P_{1}=6 \\
P_{3}=0
\end{array}\right. & Z=7 \\
\{2,0,2\} & \left\{\begin{array}{l}
P_{1}=4 \\
P_{3}=0
\end{array}\right. & Z=15 \\
\{1,0,0,0,0,1\} & \left\{\begin{array}{l}
P_{1}=4 \\
P_{6}=0
\end{array}\right. & Z=5 \\
\{0,0,1,0,0,1\} & \left\{\begin{array}{l}
P_{3}=2 \\
P_{6}=0
\end{array}\right. & Z=3
\end{array}
\end{align*}
$$

$$
\{1,1,1,0,0,0\} \quad\left\{\begin{array}{l}
P_{1}=4 \\
P_{2}=2 \\
P_{3}=0
\end{array} \quad Z=15\right.
$$

$$
Z\left(8, \left.\frac{1}{2} \right\rvert\, 4\right)=70
$$

Consequently,

$$
Z\left(N=8, \left.\frac{1}{2} \right\rvert\, l\right)=\binom{8}{l} \quad 0 \leqslant l \leqslant 4
$$

and

$$
Z\left(N=8, \frac{1}{2}\right)=2(1+8+28+56)+70=256=2^{8} .
$$

Example 4. Let us consider the case when all spins are equal to 1 and let N be the number of spins. We compute firstly the quantities a_{j} (see (3.8)) and after this consider a numerical example.
(i) $0 \leqslant j<m_{1}\left(=v_{0}\right)$. Then $r(j)=i=0$ and $n_{j}=j, q_{j}=p_{0}-j$,

$$
a_{j}= \begin{cases}-j\left[\frac{2 N-2 l}{p_{0}}\right]+2 N-2 l & \text { if } j>2 \\ -j\left[\frac{2 N-2 l}{p_{0}}\right]+\frac{j N}{p_{0}}\left(3+q_{\chi}\right)-2 l & \text { if } j \leqslant 2\end{cases}
$$

(ii) $m_{1} \leqslant j<m_{2}\left(=\nu_{0}+v_{1}\right)$. Then $r(j)=1$ and $n_{j}=1+\left(j-m_{1}\right) \nu_{0}$, $q_{j}=\left(p_{0}-v_{0}\right)\left(j-m_{1}\right)-1$,

$$
a_{j}=n_{j}\left[\frac{2 N-2 l}{p_{0}}\right]-\frac{2 N-2 l}{v_{0}}\left(n_{j}-1\right)-\delta_{n_{j}, 1} \frac{N}{p_{0}}\left(3-p_{0}+q_{\chi}\right) .
$$

(iii) $m_{2} \leqslant j<m_{3}\left(=v_{0}+v_{1}+v_{2}\right)$. Then $r(j)=2$ and $n_{j}=v_{0}+\left(j-m_{2}\right)\left(1+v_{0} \nu_{1}\right)$, $q_{j}=p_{0}-v_{0}-\left(j-m_{2}\right)\left(1-v_{1}\left(p_{0}-v_{0}\right)\right)$,

$$
a_{m_{2}}=-v_{0}\left[\frac{2 N-2 l}{p_{0}}\right]+2 N-2 l .
$$

Now let us assume $p_{0}=3+\frac{1}{3}, N=5$. It is clear that $\chi=6$ and $q_{\chi}=\frac{1}{3}$. Below we give all solutions $\lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ to the equation (3.11) when $0 \leqslant l \leqslant 5$ and compute the corresponding vacancy numbers $P_{j}=P_{j}(\lambda)$ (see (3.9)) and number of states $Z=Z\left(N, 1 \mid\left\{\lambda_{k}\right\}\right)$ (see (3.10) and (3.12)):

$$
\begin{array}{ccccc}
l=0 & \{0\} & P_{j}=0 & Z=1 & \\
l=1 & \{1,0,0\} & P_{1}=1 & Z=2 & \\
& \{0,0,1\} & P_{3}=2 & Z=3 & \\
l=2 & \{2,0,0\} & P_{1}=0 & Z=1 & Z(5,1 \mid 1)=5 \\
& \{0,0,2\} & P_{3}=1 & Z=3 & \\
& \{0,1,0\} & P_{2}=4 & Z=5 & \\
& \{1,0,1\} & \begin{cases}P_{1}=2 & Z=6 \\
P_{3}=1 & Z\end{cases} \\
& & & & Z(5,1 \mid 2)=15
\end{array}
$$

$$
\begin{aligned}
& l=3 \\
& \{3,0,0\} \\
& \{0,0,3\} \\
& \{0,0,0,0,0,1\} \\
& \{1,1,0\} \quad\left\{\begin{array}{ll}
P_{6}=1 & Z=2 \\
P_{1}=0 \\
P_{2}=2
\end{array}, Z=3\right. \\
& \{0,1,1\} \quad\left\{\begin{array}{l}
P_{2}=4 \\
P_{3}=1
\end{array} \quad Z=10\right.
\end{aligned}
$$

$$
\begin{aligned}
& l=4 \\
& \{4,0,0\} \\
& \{0,0,4\} \\
& P_{1}=-3 \\
& Z=0 \\
& P_{3}=0 \quad Z=1 \\
& \{0,0,0,1\} \quad P_{4}=-2 \quad Z=-1 \\
& \{2,1,0\} \\
& \left\{\begin{array}{l}
P_{1}=-1 \\
P_{2}=2
\end{array} \quad Z=0\right. \\
& \{0,1,2\} \quad\left\{\begin{array}{l}
P_{2}=6 \\
P_{3}=0
\end{array} \quad Z=7\right. \\
& \{3,0,1\} \quad\left\{\begin{array}{l}
P_{1}=-1 \\
P_{3}=0
\end{array} \quad Z=0\right. \\
& \begin{array}{l}
\{1,0,3\} \\
\{2,0,2\}
\end{array} \quad\left\{\begin{array}{ll}
P_{1}=3 \\
P_{3}=0
\end{array} \quad Z=4, \begin{array}{l}
P_{1}=1 \\
P_{3}=0
\end{array} \quad Z=3\right\} \\
& \{1,0,0,0,0,1\} \quad\left\{\begin{array}{l}
P_{1}=1 \\
P_{6}=2
\end{array} \quad Z=6\right. \\
& \{0,0,1,0,0,1\} \quad\left\{\begin{array}{l}
P_{3}=2 \\
P_{6}=2
\end{array} \quad Z=9\right. \\
& \{1,1,1,0,0,0\} \quad\left\{\begin{array}{l}
P_{1}=1 \\
P_{2}=4 \\
P_{3}=0
\end{array} \quad Z=10\right. \\
& l=5 \\
& \{5,0,0\} \\
& \{0,0,5\} \\
& \begin{array}{cc}
P_{1}=-5 & Z=0 \\
P_{3}=0 & Z=1
\end{array} \\
& \{4,0,1\} \quad\left\{\begin{array}{l}
P_{1}=-3 \\
P_{3}=0
\end{array} \quad Z=0\right. \\
& \{1,0,4\} \quad\left\{\begin{array}{l}
P_{1}=3 \\
P_{3}=0
\end{array} \quad Z=4\right.
\end{aligned}
$$

$$
\begin{aligned}
& \{3,0,2\} \quad\left\{\begin{array}{l}
P_{1}=-1 \\
P_{3}=0
\end{array} \quad Z=0\right. \\
& \{2,0,3\} \quad\left\{\begin{array}{l}
P_{1}=1 \\
P_{3}=0
\end{array} \quad Z=3\right. \\
& \{3,1,0\} \quad\left\{\begin{array}{l}
P_{1}=-3 \\
P_{2}=0
\end{array} \quad Z=0\right. \\
& \{0,1,3\} \quad\left\{\begin{array}{l}
P_{2}=6 \\
P_{3}=0
\end{array} \quad Z=7\right. \\
& \{1,2,0\} \quad\left\{\begin{array}{l}
P_{1}=-1 \\
P_{2}=0
\end{array} \quad Z=0\right. \\
& \left.\begin{array}{ccc}
\{0,2,1\} & \begin{cases}P_{2}=2 \\
P_{3}=0\end{cases} & Z=6 \\
\{1,0,0,1\} & \begin{cases}P_{1}=1 \\
P_{4}=0\end{cases} & Z=2
\end{array}\right\} \begin{array}{ll}
\{0,0,1,1\} \\
\{0,1,0,0,0,1\} & \begin{cases}P_{3}=2 \\
P_{4}=0\end{cases} \\
\begin{cases}P_{2}=2 \\
P_{6}=0 & Z=3\end{cases}
\end{array} \\
& \{2,0,0,0,0,1\} \quad\left\{\begin{array}{l}
P_{1}=-1 \\
P_{6}=0
\end{array} \quad Z=0\right. \\
& \{0,0,2,0,0,1\} \quad\left\{\begin{array}{l}
P_{3}=2 \\
P_{6}=0
\end{array} \quad Z=6\right. \\
& \{1,0,1,0,0,1\} \quad\left\{\begin{array}{l}
P_{1}=1 \\
P_{3}=2 \\
P_{6}=0
\end{array} \quad Z=6\right. \\
& \{2,1,1\} \\
& \left\{\begin{array}{l}
P_{1}=-1 \\
P_{2}=2 \\
P_{3}=0
\end{array} \quad Z=0\right. \\
& \{1,1,2\} \quad\left\{\begin{array}{l}
P_{1}=1 \\
P_{2}=4 \\
P_{3}=0
\end{array} \quad Z=10\right. \\
& Z(5,1 \mid 5)=51 \\
& Z(N=5,1)=2(1+5+15+30+45)+51=243=3^{5} .
\end{aligned}
$$

References

[TS] Takahashi M and Suzuki M 1972 One-dimensional anisotropic Heisenberg model at finite temperatures Prog. Theor. Phys. 48 2187-209
[K1] Kirillov A N 1984 Combinatorial identities and completeness of states for the generalized Heisenberg magnet Zap. Nauch. Sem. LOMI 131 88-105
[K2] Kirillov A N 1988 On the Kostka-Green-Foulkes polynomials and Clebsch-Gordon numbers J. Geom. Phys. 5 365-89
[KR1] Kirillov A N and Reshetikhin N Yu 1985 Properties of kernels of integrable equations for $X X Z$ model of arbitrary spin Zap. Nauch. Sem. LOMI 146 47-91
[KR2] Kirillov A N and Reshetikhin N Yu 1987 Exact solution of the integrable $X X Z$ Heisenberg model with arbitrary spin J. Phys. A: Math. Gen. 20 1565-97
[FT] Faddeev L D and Takhtadjan L A 1981 Spectrum and scattering of excitations in one dimensional isotropic Heisenberg model Zap. Nauch. Sem. LOMI 109134
[EKK] Essler F, Korepin V E and Schoutens K 1992 Fine structure of the Bethe ansatz for the spin- $\frac{1}{2}$ Heisenberg XXX model J. Phys. A: Math. Gen. 25 4115-26
[KM] Kedem R and McCoy B 1993 Construction of modular branching functions from Bethe's equations in the 3-state Potts chain J. Stat. Phys. 74865
[BM] Bercovich A and McCoy B 1996 Continued fractions and fermionic representations for characters of $\mu\left(p, p^{\prime}\right)$ minimal models Lett. Math. Phys. 37 49-66

